Holy Cross College (Autonomous), Nagercoil Kanyakumari District, Tamil Nadu. Accredited with A⁺ by NAAC - IV Cycle – CGPA 3.35 # Affiliated to Manonmaniam Sundaranar University, Tirunelveli # **DEPARTMENT OF MATHEMATICS** TEACHING PLAN (PG) ODD SEMESTER 2025-2026 #### Vision To empower women globally competent with human values and ethics acquiring academic and entrepreneurship skills through holistic education. #### Mission - 1. To create opportunities which will ensure academic excellence in critical thinkinghumanistic and scientific inquiry. - 2. To develop application-oriented courses with the necessary input of values. - 3. To create a possible environment for innovation, team spirit and entrepreneurial leadership. - 4. To form young women of competence, commitment and compassion. #### **Graduate Attributes** Graduates of our College develop the following attributes during the course of their studies. #### > Creative thinking: Equipping students with hands-on-training through skill based courses and promote startup. #### > Personality development: Coping with increasing pace and change of modern life through value education, awareness on human rights, gender issues and giving counselling for the needful. ### > Environmental consciousness and social understanding: Reflecting upon green initiatives and understanding the responsibility to contribute to the society; promoting social and cultural diversity through student training and service learning programmes. #### **Communicative competence:** Offering effective communication skills in both professional and social contexts through bridge courses and activities of clubs and committees. #### > Aesthetic skills: Engaging mind, body and emotions for transformation through fine arts, meditation and exercise; enriching skills through certificate courses offered by Holy Cross Academy. #### > Research and knowledge enrichment: Getting in-depth knowledge in the specific area of study through relevant core papers; ability to create new understanding through the process of critical analysis and problem solving. #### > Professional ethics: Valuing honesty, fairness, respect, compassion and professional ethics among students. The students of social work adhere to the *National Association of Social Workers Code of Ethics* #### > Student engagement in the learning process: Obtaining extensive and varied opportunities to utilize and build upon the theoretical and empirical knowledge gained through workshops, seminars, conferences, industrial visits and summer internship programmes. ### > Employability: Enhancing students in their professional life through Entrepreneur development, Placement & Career guidance Cell. #### **Women empowerment and leadership:** Developing the capacity of self-management, team work, leadership and decision making through gender sensitization programmes. **Programme Educational Objectives (PEOs)** | PEOs | Upon completion of M. Sc. Degree Programme, the graduates will be | Mapping | |------|--|--------------| | | able to: | with Mission | | PEO1 | apply scientific and computational technology to solve social and | M1, M2 | | | ecological issues and pursue research. | | | PEO2 | continue to learn and advance their career in industry both in private and | M4 & M5 | | | public sectors. | | | PEO3 | develop leadership, teamwork, and professional abilities to become a more | M2, M5 & | | | cultured and civilized person and to tackle the challenges in servingthe | M6 | | | country. | | **Programme Outcomes (POs)** | POs | Upon completion of M.Sc. Degree Programme, the graduates will be able to: | Mapping with PEOs | |-----|---|-------------------------| | PO1 | apply their knowledge, analyze complex problems, think independently, formulate and perform quality research. | PEO1 &
PEO2 | | PO2 | carry out internship programmes and research projects to develop scientific and innovative ideas through effective communication. | PEO1, PEO2
&PEO3 | | PO3 | develop a multidisciplinary perspective and contribute to theknowledge capital of the globe. | PEO2 | | PO4 | develop innovative initiatives to sustain ecofriendly environment | PEO1, PEO2 | | PO5 | through active career, team work and using managerial skills guidepeople to the right destination in a smooth and efficient way. | PEO2 | | PO6 | employ appropriate analysis tools and ICT in a range of learning scenarios, demonstrating the capacity to find, assess, and apply relevant information sources. | PEO1,
PEO2 &
PEO3 | | PO7 | learn independently for lifelong executing professional, socialand ethical responsibilities leading to sustainable development. | PEO3 | **Programme Specific Outcomes (PSOs)** | | Upon completion of M.Sc. Degree Programme, the | POs | |-------------|--|-----------| | PSOs | graduates of Mathematics will be able to: | Addressed | | | acquire good knowledge and understanding, to solve specific | PO1 & PO2 | | PSO1 | Transfer of the contract th | | | | statistics | | | | understand, formulate, develop mathematical arguments, | | | PSO2 | | PO3 & PO5 | | | social sciences, business and other context /fields. | | | | prepare the students who will demonstrate respectful engagement | | | PSO3 | , | PO6 | | , | references todecisions and actions | | | | pursue scientific research and develop new findings with | PO4 & PO7 | | PSO4 | globalImpact using latest technologies. | | | | possess leadership, teamwork and professional skills, enabling | | | PSO5 | them to become cultured and civilized individuals capable of | PO5 & PO7 | | | effectively overcoming challenges in both private and public | | | | sectors. | | Class : I M.Sc Title of the Course: ALGEBRAIC STRUCTURES Semester : I Course Code : MP231CC1 | | | | | | Inst. | | | Marks | | |------------|---|---|---|---|---------|-------|-----|----------|-------| | CourseCode | L | T | P | S | Credits | Hours | CIA | External | Total | | MP231CC1 | 5 | 2 | - | - | 5 | 7 | 25 | 75 | 100 | Learning Objectives To understand the simple concepts of the theory of equations 1. To find the roots of the equations by using techniques in various methods. ### **Course Outcomes** | СО | Upon completion of this course, the students will be able to: | Cognitive
Level | |-------------|---|--------------------| | | Recall basic counting principle, define class equations to solve problems, explain Sylow's theorems and apply the | K1 | | CO-1 | theorem to find number of Sylow subgroups. | KI | | CO-2 | Define Solvable groups, define direct products, examine the properties of finite abelian groups, define modules | K2 | | | Define similar Transformations, define invariant subspace, explore the properties of triangular matrix, to find | К3 | | CO-3 | the index of nilpotence to decompose a space into invariant subspaces, to find invariants of linear transformation, | | | | to explore the properties of nilpotent transformation relating nilpotence with invariants | | | CO-4 | Define Jordan, canonical form, Jordan blocks, define rational canonical form, define companion matrix of polynomial, find the elementary devices of transformation, apply the concepts to find characteristic polynomial of linear transformation. | K4 | | CO-5 | Define trace, define transpose of a matrix, explain the properties
of trace and transpose, to find trace, to find transpose of matrix, to prove Jacobson lemma using the triangular form, define symmetric matrix, skew symmetric matrix, adjoint, to define Hermitian, unitary, normal transformations and to verify whether the transformation in Hermitian, unitary and normal | K5 | ## TEACHING PLAN **Total Contact hours: 105 (Including lectures, assignments and tests)** | Unit | Module | Торіс | Teaching
Hours | O | Cognitive level | Pedagogy | Student Centric
Method | E-
Resources | Assessment/
Evaluation
Methods | |------|--------|---|-------------------|---|-----------------|----------------------------|--|--|--------------------------------------| | Ι | | 'S THEOREMS | T | T | 1 | 1 | T | | | | | 1. | Counting
Principle | 4 | 1 | K1 & K2 | Brainstorming | Participative Learning through discussion and Q&A | YouTube
Videos | MCQ,
Qustioning
CIA I | | | 2. | Class equation for finite groups | 4 | 1 | K2 | Lecture with illustrations | Experiential
learning through
real life
illustrations and
Problem-solving
tasks | E-notes,
Video
materials | Slip Test,
class Test
CIA 1 | | | 3. | Class equation
for finite
groups and ts
applications | 4 | | К3 | Problem
Solving | Problem-solving
in groups; Teach-
back sessions | Power Point
Presentation,
E-notes,
Video
materials | Questioning, MCQ CIA 1 | | | 4. | Sylow's theorems | 6 | 1 | K4 | Lecture
Discussion | Participative
learning with
application-based
problems,
experimental | Interactive
Power Point
Presentation, | Questioning, Quiz CIA 1 | | | | | | | | | learning via visual models | | | |----|----------|-----------------------|---|---|---------|-----------------------|---|--|-----------------------------| | II | GROUP 1. | THEORY AND M | | 1 | K1 & K2 | Dunaissata musica - | Doutiningting | YouTube | True/False | | | 1. | Solvable groups | 4 | 1 | KI & K2 | Brainstorming | Participative Learning through discussion and Q&A | Videos | Assignment CIA I | | | 2. | Direct products | 5 | | K2 | Flipped
Classroom | Experiential learning through real life illustrations and Problem-solving tasks | E-notes,
Video
materials | Short
summary
CIA 1 | | | 3. | Finite abelian groups | 5 | 1 | K2& K4 | Lecture
Discussion | Problem-solving in groups; Teachback sessions | Power Point
Presentation,
E-notes,
Video
materials | Concept definitions CIA 1 | | | 4. | Modules | 4 | 1 | К3 | Problem
Solving | Participative learning with application-based problems, experimental | Interactive
Power Point
Presentation, | Quiz
CIA 1
Assignment | | | | | | I | | | 1 ' ' 1 | 1 | | |-----|--------|--------------------------------|---------|-----------|---------|---------------------------|---|--|-----------------------------------| | | | | | | | | learning via visual | | | | | | | | | | | models | | | | III | LINEAR | TRANSFORMA | ΓΙΟΝ | | | | | | | | | 1. | Linear
Transformations
: | 4 | 1 | K1 & K2 | Brainstorming | Participative Learning through discussion and Q&A | YouTube
Videos | Quiz
CIA 1 | | | 2. | Canonical form | 5 | 1 | K2 | Lecture with illustration | Experiential
learning through
real life
illustrations and
Problem-solving
tasks | E-notes,
Video
materials | class Test
CIA 1 | | | 3. | Triangular form | 4 | | K2 | Lecture
Discussion | Problem-solving in groups; Teachback sessions | Power Point
Presentation,
E-notes,
Video
materials | Slip Test
CIA II
Assignment | | | 4. | Nilpotent
transformations | 5 | 1 | К3 | Problem
Solving | Participative
learning with
application-based
problems,
experimental
learning via visual
models | Interactive
Power Point
Presentation, | Open
book
Test
CIA II | | IV | JORDAN | AND RATIONAL | CANONIC | CAL FORMS | 1 | 1 | 1 | 1 | | | | 1. | Jordan form | 4 | 1 | K1 & K2 | Brainstorming | Participative Learning through discussion and Q&A | YouTube
Videos | Simple Questio ns CIA II | |---|-------|--|---|---|---------|------------------------|---|--|-------------------------------------| | | 2. | Differential
equation of first
order but of
higher degree | 5 | 1 | K2 | Blended
Learning | Experiential learning through real life illustrations and Problem-solving tasks | E-notes,
Video
materials | Quiz
CIA II
Assignment | | | 3. | Equations solvable for p, x, | 5 | 1 | К3 | Integrative method | Problem-solving in groups; Teachback sessions | Power Point
Presentation,
E-notes,
Video
materials | Explain
the
concept
CIA II | | | 4. | rational canonical form | 4 | | K1 & K2 | Collaborative learning | Participative
learning with
application-based
problems,
experimental
learning via visual
models | Interactive
Power Point
Presentation, | Slip Test
CIA II | | V | TRACE | AND TRANSPOS | E | | | | | | | | | 1. | Trace and transpose | 4 | 1 | K1 & K2 | Flipped
Classroom | Participative Learning through discussion and Q&A | YouTube
Videos | MCQ
CIA II | | 2. | Hermitian
transformation | 5 | 1 | K2 | Lecture with illustration | Experiential learning through real life illustrations and Problem-solving tasks | E-notes,
Video
materials | Concept
explanati
ons
CIA II | |----|---------------------------------|---|---|---------|---------------------------|---|--|--| | 3. | unitary, normal transformations | 5 | 1 | K2 & K3 | Problem
Solving | Problem-solving in groups; Teachback sessions | Power Point
Presentation,
E-notes,
Video
materials | Questioning
CIA II | | 4. | Real quadratic form. | 4 | | K2 | Group
Discussion | Participative
learning with
application-based
problems,
experimental
learning via visual
models | Interactive
Power Point
Presentation, | Recall steps
CIA II
Assignment
Quiz | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development **Activities (SD): Seminar Presentation** Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Activities related to Cross Cutting Issues: - Assignment: Mention the last date to submit: Applications of Sylow's Theorem (Due date: 02-09-2025 Seminar Topics: Trace and transpose-Hermitian, unitary, normal transformations, real quadratic form. #### **Sample Questions** #### PART-A(5x1=5) - 1. Compute N(12) of a group S_3 (CO1-U) - 2. State True or False: n(k) is defined by $p^{n(k)} \mid (p^k)!$ but $p^{n(k)+1} \nmid (p^k)!$ (CO2-U) - 3. The number of Sylow 3-subgroup of a group S₃ is-----(CO3-R) - 4. The matrix A is said to be a skew-symmetric matrix if -----(CO4-U) a) $$A' = A$$ b) $A' = -A$ c) $A' = 0$ d) $A' = 1$ - 5. The only irreducible, non constant, polynomials over the field of real numbers are either of degree ------(CO5-A) - a) 1 or 2 b) 0 or 2 c) 0 or 1 d) 1 or 3 PART-B $$(5 \times 6 = 30)$$ - 1. Prove that a group of order p² (p= prime) is abelian.(CO1-A) - 2. Define double coset of 2 sub groups A and B in a group G and prove that $$O(AxB) = \frac{O(A)O(B)}{O(A \cap xBx^{-1})} . (CO2-An)$$ - 3. If V is finite dimensional over F then show that $T \in A(V)$ is invertible iff the constant term of the minimal polynomial for T is not 0.(CO3-E) - 4. Suppose that $V = V1 \oplus V2$ where V1 and V2 are subspaces of V invariant under T. Let T1 and T2 be the linear transformations induced by T on V1 and V2 respectively. If the minimal polynomial of T1 over F is p1(x) while that of T2 is p2(x) then prove that the minimal polynomial for T over F is the least common multiple of p1(x) and p2(x). (CO4-U) 5. If $T \in A(V)$ is Hermitian then prove that all its characteristic roots are real.(CO5-AN) PART- C (5 x $$12 = 60$$) - 1. State and prove Sylow's theorem.(CO1-AN) - 2. Prove that the number of Sylow p-subgroups of G is of the form 1+kp where (1+kp)|o(G)| (CO2-E) - 3. If A is an algebra, with unit element over F, then prove that A is isomorphic to a subalgebra of (V) for some vector space V over F. (CO3-An) - 4. Prove that the elements S and T in A(V) are similar in AF(V) if and only if they have the same elementary divisors. (CO4-U) - 5. Prove that the Hermitian linear transformation T is non negative iff its characteristic roots are nonnegative. (CO5-R) Head of the Department Course Instructor Dr. M.K. Angel Jebitha Dr. L. Jesmalar Class : I M.Sc. Mathematics Title of the Course : Core Course II: Real Analysis I Semester : I Course Code : MP231CC2 | | Course Code | L | Т | P | S | Credits | Inst. Hours | Total Hours | | Marks | | | |---|-------------|---|---|---|---|---------|-----------------|-------------|-------------|-------|----------|-------| | | | | | | | Civalis | 111500 110 0115 | Total Hours | 10111110113 | CIA | External | Total | | • | MP231CC2 | 5 | 2 | _ | _ | 4 | 7 | 105 | 25 | 75 | 100 | | ### Learning Objectives: - 1. To work
comfortably with functions of bounded variation, Riemann- Stieltjes Integration, convergence of infinite series, infinite product and uniform convergence. - 2. To relate its interplay between various limiting operations. #### **Course Outcomes** | On t | he successful completion of the course, students will be able to: | | |------|---|--------| | 1. | analyze and evaluate functions of bounded variation and rectifiable Curves. | K4, K5 | | 2. | describe the concept of Riemann- Stieltjes integrals and its properties. | K1, K2 | | 3. | demonstrate the concept of step function, upper function, Lebesgue function and their integrals. | К3 | | 4. | construct various mathematical proofs using the properties of Lebesgue integrals and establish the Levi monotone convergence theorem. | K3, K5 | | 5. | formulate the concept and properties of inner products, norms and measurable functions. | K2, K3 | K1 - Remember; K2 - Understand; K3- Apply; K4 - Analyse; K5- Evaluate # **Total Contact hours: 105 (Including lectures, assignments and tests)** | Unit | Module | Topic | Teaching
Hours | Assessment
Hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/
Evaluation
Methods | |------|----------|--|-------------------|---------------------|--------------------|--|---|--------------------------------------|--| | I | FUNCTION | ONS OF BOUNDED VA | RIATION, | INFINITE SE | RIES | | | | | | | 1 | monotonic function
connected and
disconnected functions
compact sets and
examples | | 1 | K2(U) &
K4(An) | Lecturing,
Active
Learning | Think-Pair-
Share, Peer
Teaching,
Discussions | Video
Lectures,
Slides | Quiz using
Quizizz,
Written
Assignment,
Oral
Presentation,
CIA I | | | 2 | Properties of monotonic functions, Functions of bounded variation, Definition - Partition, Bounded variation, Examples of continuous functions that are not of bounded variation, Illustration on boundedness of f is not necessary for f to be of bounded variation | 2 | | K4(An) | Lecturing,
Collaborativ
e Learning | Pause and solve, pose conceptual problems, learning circles, teambased learning | Video
Lecture,
Problem
Bank | Conceptual
Quiz, Group
Presentation,
CIA I | | | 3 | Total variation – Definition, Behaviour of functions of | 3 | 1 | K4(An) | Lecturing,
Inquiry- | Formulating questions, pause and | PowerPoint
Presentation, | Quiz using google form, | | | bounded variation, Example illustrating reciprocal of functions of total variation need not be of total variation, Additive property of total variation | | | | based
Learning | solve, pose
conceptual
problems,
discussion on
the materials
referred. | YouTube
Videos , E-
notes | class test, Q
& A, CIA I | |---|---|---|---|--------|------------------------------------|---|--|---| | 4 | Total variation on [a,x] as a function of the right end point x, Functions of bounded variation expressed as the difference of increasing functions – Characterisation of functions of bounded variation, Continuous functions of bounded variation | 3 | | K3(Ap) | Lecturing,
Flipped
Classroom | Applying concepts, working through problems, discussion on the materials referred | YouTube
Videos,
Interactive
PPT | Written Assignment, Open Book Exam Questions, CIA I | | 5 | Absolute and Conditional convergence, Definition — Absolutely convergent series, Example illustrating convergence does not imply absolute convergence, Dirichlet's test and Abel's test | 3 | 1 | K4(An) | Lecturing,
Blended
learning | Online discussions, collaborative documents, online problem sets | Online
Tutorials and
Notes | Problem-
Solving
Assignments,
Open Book
Exam
Questions,
CIA I | | | 6 | Rearrangement of series, Riemann's theorem on conditional convergent series | 2 | | K3(Ap) | Lecturing, Differentiate d instruction | Self-paced
learning, peer
sharing | YouTube
videos, Quiz
using quizizz | Quiz, viva,
CIA I | |----|---------|---|---------|---|-------------------|---|---|--|--| | II | THE RIE | EMANN - STIELTJES II | NTEGRAL | | | _ | | | | | | 1 | The Riemann - Stieltjes integral - Introduction, Basics of calculus, Notation, Definition - refinement of partition, norm of a partition, The definition of The Riemann - Stieltjes integral, integrand, integrator, Riemann integral | 3 | 1 | K2(U) &
K4(An) | Lecturing,
Active
Learning | Think-Pair-
Share, Peer
Teaching,
Discussions | Video
Lectures,
Slides | Quiz using
Quizizz,
Written
Assignment,
Oral
Presentation,
CIA I | | | 2 | Linear properties of
Riemann - Stieltjes
integral, Integration by
parts, Connection
between integrand and
the integrator in a
Riemann – Stieltjes
integral | 3 | | K3(Ap) | Lecturing,
Collaborativ
e Learning | Pause and
solve, pose
conceptual
problems,
learning
circles, team-
based learning | Video
Lecture,
Problem
Bank | Conceptual
Quiz, Group
Presentation,
CIA I | | | 3 | Change of variable in
a Riemann – Stieltjes
integral, Reduction to
a Riemann integral,
Step functions as
integrators, Example
showing that the | 3 | 1 | K3(Ap) | Lecturing,
Inquiry-
based
Learning | Formulating questions, pause and solve, pose conceptual problems, discussion on | PowerPoint
Presentation,
YouTube
Videos | Quiz using
google form,
class test,
Q&A, CIA I | | | existence of integral can also be affected by a change | | | | | the materials referred. | | | |---|---|---|---|--------|------------------------------------|---|---|---| | 4 | Reduction of a Riemann – Stieltjes integral to a finite sum, Definition – Step function, Euler's Summation formula, Monotonically increasing integrators, upper and lower integrals, Definition – upper and lower Stieltjes sums of f with respect to α for the partition P, Theorem illustrating for increasing α, refinement of partition increases the lower sums and decreases the upper sums | 3 | | K3(Ap) | Lecturing,
Flipped
Classroom | Applying concepts, working through problems, discussion on the materials referred | YouTube
Videos,
Interactive
PPT, E-notes | Written
Assignment,
CIA I | | 5 | Definition – Upper and lower Stieltjes integral, upper and lower Riemann sums, Examples, Additive and linearity properties of upper and lower integrals, Riemann's | 3 | 1 | K4(An) | Lecturing,
Blended
learning | Online discussions, collaborative documents, online problem sets | Online
Tutorials and
Notes | Problem-
Solving
Assignments,
Open Book
Exam
Questions,
CIA I | | | | condition, Comparison theorems | | | | | | | | |-----|---------|--|---|---|-------------------|---|---|--|--| | III | THE RIE | EMANN - STIELTJES II | | | | | | | | | | 1 | Integrators of bounded
variation, Sufficient
conditions for
existence of Riemann
– Stieltjes integrals | 3 | 1 | K2(U) &
K4(An) | Lecturing,
Active
Learning | Think-Pair-
Share, Peer
Teaching,
Discussions | Video
Lectures,
Slides | Quiz using Written Assignment, Seminar Presentation, CIA I | | | 2 | Necessary conditions for existence of Riemann – Stieltjes integrals,
Theorem illustrating common discontinuities from the right or from the left, Mean - value theorems for Riemann – Stieltjes integrals – first mean – value theorem, second mean – value theorem, the integral as a function of the interval and its properties | 3 | | K4(An) | Lecturing,
Collaborativ
e Learning | Pause and solve, pose conceptual problems, learning circles, teambased learning | Video
Lecture,
Problem
Bank | Conceptual Quiz, Group Presentation, Quiz using google form, CIA I | | | 3 | Second fundamental
theorem of
fundamental calculus,
Change of variable in a
Riemann integral,
Second Mean – Value | 3 | 1 | K4(An) | Lecturing,
Inquiry-
based
Learning | Formulating questions, pause and solve, pose conceptual problems, discussion on | PowerPoint
Presentation,
YouTube
Videos | class test,
Q&A, CIA II | | | | theorem for Riemann | | | | | the materials | | | |----|---------|---|----------|------------|----------|------------------------------------|---|--|---| | | | integrals | | | | | referred. | | | | | 4 | Riemann – Stieltjes integrals depending on a parameter, Differentiation under the integral sign | 3 | | K3(Ap) | Lecturing,
Flipped
Classroom | Applying concepts, working through problems, discussion on the materials referred | YouTube
Videos,
Interactive
PPT | Written
Assignment,
Open Book
Exam
Questions,
CIA II | | | 5 | Interchanging the order of integration, Lebesgue's criterion for existence of Riemann integrals, Definition – measure zero, examples, Definition – oscillation of f at x, oscillation of f on T, Lebesgue's criterion for Riemann integrability | 3 | 1 | K4(An) | Lecturing,
Blended
learning | Online discussions, collaborative documents, online problem sets | Online
Tutorials and
Notes | Problem-
Solving
Assignments,
CIA II | | IV | INFINIT | E SERIES AND INFINI | TE PRODU | CTS, POWER | R SERIES | | | | | | | 1 | Double sequences, Definition – Double sequence, convergence of double sequence, Example, Definition – Uniform convergence, Double series, Double series and its convergence, | 3 | 1 | K4(An) | Lecturing,
Active
Learning | Think-Pair-
Share, Peer
Teaching,
Discussions | Video
Lectures,
Slides | Written
Assignment,
Oral
Presentation,
CIA II | | | Rearrangement
theorem for double
series, Definition –
Rearrangement of
double sequence | | | | | | | | |---|--|---|---|--------|--|---|---|--| | 2 | A sufficient condition for equality of iterated series, Multiplication of series, Definition – Product of two series, conditionally convergent series, Cauchy product, Merten's Theorem, Dirichlet product | 3 | | K4(An) | Lecturing,
Collaborativ
e Learning,
heuristic | Pause and solve, pose conceptual problems, learning circles, teambased learning | Video
Lecture,
Problem
Bank | Conceptual
Quiz, Group
Presentation,
CIA II | | 3 | Cesaro Summability, Infinite products, Definition – infinite products, Cauchy condition for products | 3 | 1 | K4(An) | Lecturing,
Inquiry-
based
Learning | Formulating questions, pause and solve, pose conceptual problems, discussion on the materials referred. | PowerPoint
Presentation,
YouTube
Videos, E-
notes | Quiz using
google form,
class test,
Q&A, CIA II | | 4 | Power series, Definition – Power series, Multiplication of power series, Definition – Taylor's series | 3 | | K3(Ap) | Lecturing,
Flipped
Classroom | Applying concepts, working through problems, discussion on | YouTube
Videos,
Interactive
PPT | Written Assignment, Open Book Exam Questions, CIA II | | | 5 | Abel's limit theorem,
Tauber's theorem | 3 | 1 | K4(An) | Lecturing,
Blended
learning | the materials referred Online discussions, collaborative documents, online problem sets | Online
Tutorials and
Notes | Problem-
Solving
Assignments,
CIA II | |---|--------|--|---|----------|-------------------|--|---|--|---| | V | SEQUEN | CES OF FUNCTIONS | | <u> </u> | T | Τ | Γ | T == - | T | | | 1 | Sequences of function - Pointwise convergence of sequence of function, Examples of sequences of real valued functions | 3 | 1 | K2(U) &
K4(An) | Lecturing,
Active
Learning | Think-Pair-
Share, Peer
Teaching,
Discussions | Video
Lectures,
Slides | Quiz using
Quizizz,
Written
Assignment,
Oral
Presentation,
CIA II | | | 2 | Uniform convergence
and continuity, Cauchy
condition for uniform
convergence | 3 | | K2(U) &
K4(An) | Lecturing,
Collaborativ
e Learning,
heuristic
method | Pause and
solve, pose
conceptual
problems,
learning
circles, team-
based learning | Video
Lecture,
Problem
Bank | Conceptual
Quiz, Group
Presentation,
CIA II | | | 3 | Uniform convergence
of infinite series of
functions, Riemann –
Stieltjes integration, | 3 | 1 | K2(U) &
K4(An) | Lecturing,
Inquiry-
based
Learning | Formulating questions, pause and solve, pose conceptual problems | PowerPoint
Presentation,
YouTube
Videos | Quiz using
google form,
class test,
Q&A, CIA II | | 4 | Non-uniform convergence and term-by-term integration | 3 | | K3(Ap) | Lecturing,
Flipped
Classroom | Applying concepts, working through problems, discussion on the materials referred | YouTube
Videos,
Interactive
PPT | Written
Assignment,
CIA II | |---|---|---|---|----------------|------------------------------------|---|--|---| | 5 | Uniform convergence
and differentiation,
Sufficient condition
for uniform
convergence of a
series, Mean
convergence | 3 | 1 | K2(U) & K4(An) | Lecturing,
Blended
learning | Online discussions, collaborative documents, online problem sets | Online
Tutorials and
Notes | Problem-
Solving
Assignments,
Open Book
Exam
Questions,
CIA I | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development Activities (Em / En /SD): Problem-solving, Seminar Presentation, Group Discussion Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Assignment: Solving Exercise Problems (Late date for submission: 08.08.2025) Seminar Topics: Uniform convergence, Absolute and Conditional convergence, Dirichlet's test and Abel's test, Riemann's theorem on conditional convergent series, Sequences of Functions, Uniform convergence. **Sample Questions** Part A (1 Marks) 1. Rectifiable arcs have _____ arc length. (K1-R, CO-1) - (a) infinite (b) finite (c) countably finite (d) countably infinite - 2. If a < b, we define $\int_a^b f d\alpha =$ _____ whenever $\int_a^b f d\alpha$ exists. (**K2-U**, **CO-2**) - 3. State the first mean value theorem for Riemann Stieltjes Integral. (K2-U, CO-3) - 4. State True or False: The two series $\sum_{n=0}^{\infty} z^n$ and $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ have the same radius of convergence. (K3-Ap, CO-4) - 5. Differentiate between pointwise convergence and uniform convergence. (K2-U, CO-5) #### Part B (6 Marks) - 1. Assume that f and g are each of bounded variation on [a,b]. Prove that so are their sum, difference and product. Also, prove $V_{f\pm g} \le V_f + V_g$ and $V_{f*g} \le AV_f + BV_g$ where $A = \sup\{|g(x)| : x \in [a,b]\}$, $B = \sup\{|f(x)| : x \in [a,b]\}$. (K2-U, CO-1) - 2. Assume that $a \nearrow$ on [a, b]. Then prove that $\underline{I}(f, \alpha) \le \overline{I}(f, \alpha)$. (K1-R, CO-2) - 3. Assume $f \in R(\alpha)$ and $g \in R(\alpha)$ on [a,b], where $a \nearrow$ on [a,b]. Define $F(x) = \int_a^x f(t) d\alpha(t)$ and $G(x) = \int_a^x f(t) d\alpha(t)$ if $x \in [a,b]$. Then prove that $f \in R(G)$ and $g \in R(F)$ on [a,b] and we have $\int_a^b f(x)g(x)d\alpha(x) = \int_a^x f(x)dG(x) = \int_a^x g(x)dF(x)$. (K1-R, CO-1) - 4. Assume that the power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges for each z in $B(z_0;r)$. Then prove that the function f defined by the equation $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$, if $f(z) \in B(z_0;r)$, is continuous on $f(z) \in B(z_0;r)$. (K1-R, CO-1) - 5. Let $\{f_n\}$ be a sequence of functions defined on a set S. There exists a function f such that $f_n \to f$ uniformly on S if, and only if, the Cauchy condition is
satisfied: For every $\epsilon > 0$ there exists an N such that m > N and n > N implies $|f_m(x) f_n(x)| < \epsilon$, for every x in S. (K1-R, CO-1) #### Part C (12 Marks) - 1. State and prove the additive property of total variation. (K1-R, CO-1) - 2. State and prove the formula for integration by parts. (K3-Ap, CO-2) - 3. State and prove the second fundamental theorem of integral calculus. (K4-An, CO-3) - 4. State and prove Abel's limit theorem. (K4-An, CO-4) - 5. State and prove Weierstrass M-test. (K3-Ap, CO-5) Head of the Department Dr. M. K. Angel Jebitha Course Instructor Antin Mary S Class : I M.Sc. Mathematics Title of the Course : Core Course III: Ordinary Differential Equations Semester : I Course Code : MP241CC3 | Course Code | L | Т | P | S | Credits | Inst. | Total Hours | | Marks | | | |-------------|---|---|---|---|---------|-------|-------------|-----|----------|-------|--| | Course Couc | _ | | | | | Hours | | CIA | External | Total | | | MP241CC3 | 5 | 1 | _ | _ | 5 | 6 | 90 | 25 | 75 | 100 | | ### **Learning Objectives:** - 1. To develop proficiency in solving second-order linear ordinary differential equations using methods such as variation of parameters and power series solutions. - 2. To solve systems of first-order linear differential equations with constant coefficients, understanding the existence and uniqueness of solutions. #### **Course Outcomes** | | On the successful completion of the course, students will be able to: | | |----|---|----| | 1. | recall and describe the fundamental concepts of second-order linear ordinary differential equations, including homogeneous and non-homogeneous forms. | K1 | | 2. | understand the method of variation of parameters for solving non-homogeneous second-order linear differential equations and illustrate its application through examples. | K2 | | 3. | apply power series solutions to solve first and second-order linear ordinary differential equations, distinguishing between ordinary points and regular singular points. | К3 | | 4. | analyze the stability and behaviour of solutions for systems of first-order linear differential equations with constant coefficients, identifying critical points and their implications. | K4 | | 5. | utilize special functions such as Legendre polynomials and Bessel functions to solve differential equations and evaluate their effectiveness in addressing specific mathematical and physical problems. | K5 | K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5- Evaluate # Total Contact hours: 90 (Including lectures, assignments and tests) | Unit | Module | Topic | Teaching
Hours | Assessment
Hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/
Evaluation
Methods | |------|--------|---|-------------------|---------------------|--------------------|------------------------|-------------------------------|---------------------|---| | I | SECONE | ORDER HOMO | GENEOUS I | EQUATIONS | | | | | | | | 1 | Second order
homogeneous
equations | 3 | 1 | K1(R) &
K2 (U) | Lecture
Method | Group
Discussion | YouTube
Video | Conceptual
Questions,
CIA I | | | 2 | The general solution of a homogeneous equation | 3 | | K2(U) | Collaborative learning | Peer
Tutoring | YouTube
Lectures | Quiz, Group
Presentation,
CIA I | | | 3 | The use of a known solution to find another | 3 | 1 | K3(Ap) | Inductive
Method | Collaborative
Learning | Interactive PPT | Concept
check polls
during class
using Slido,
CIA I | | | 4 | The method of variation of parameters | 3 | | K3(Ap) | Problem
Solving | Problem-
Based
Learning | - | Open Book
Exam, CIA I | | | 5 | Problems on the method of variation of parameters | 3 | 1 | K4(An) | Analytic
Method | Peer
Learning | - | Problem Solving Assignment, CIA I | | II | POWER | SERIES SOLUTION | ONS AND S | PECIAL FUN | CTIONS | | | | | | | 1 | Power series solutions and special functions | 3 | 2 | K1(R) | Blended classroom | Peer
Instruction | YouTube
Video | Peer Review,
CIA I | | | 2 | A review of power series | 3 | | K2(U) | Flipped
Classroom | Think Pair
Share | YouTube
Video | Peer
discussions
and concept
maps, CIA I | |-----|--------|---|----------|-------|-----------------|---------------------------------|------------------------|--------------------|---| | | 3 | Series solutions
of first- order
equations | 3 | 1 | K3(Ap) | Integrative method | Mind map | - | Problem-
Solving
Assignments,
CIA II | | | 4 | Second-order linear equations | 3 | - | K3(Ap) | Analytic
Method | Peer
Teaching | Interactive PPT | Slip Test,
CIA II | | | 5 | Ordinary points - Regular singular points | 3 | | K4(An) | Collaborative learning | Brainstormin g | - | Q & A,
CIA II | | III | SYSTEM | S OF FIRST-ORD | ER EQUAT | ΓΙΟΝS | | 1 | | 1 | | | | 1 | Systems of First-
Order Equations | 3 | 1 | K1(R) & K3 (Ap) | Flipped
Classroom | Heuristic
Method | Video
Lectures | Conceptual
MCQs
CIA II | | | 2 | Linear Systems | 3 | | K2(U) | Contextual
Based
Learning | Think Pair
Share | Interactive
PPT | Concept
explanations,
CIA II | | | 3 | Problems on
Linear Systems | 3 | 1 | K3(Ap) | Integrative method | Problem Based Learning | - | Slip Test,
CIA II | | | 4 | Homogeneous
Linear Systems
with Constant
Coefficients. | 3 | | K3(Ap) | Synthetic
Method | Problem
Solving | Interactive
PPT | Quiz, CIA II | | | 5 | Problems on Homogeneous Linear Systems with Constant Coefficients. | 3 | 1 | K4(An) | Lecture
Method | Concept
Mapping | YouTube
Video | Peer discussion, CIA II | |----|--------|--|----------|-------------|----------------|---------------------------------|------------------------------|------------------|--| | IV | | ORE POLYNOMIA | | 1 | 1 | 1 | 1 | T . | | | | 1 | Legendre
Polynomials | 3 | 1 | K1(R) & K2 (U) | Inquiry-Based
Learning | Think-Pair-
Share | YouTube
Video | Conceptual
Quiz, CIA II | | | 2 | Properties of
Legendre
Polynomials | 3 | | K2(U) | Contextual
Based
Learning | Logical reasoning | - | Conceptual
Assignment,
CIA II | | | 3 | Bessel's
Functions | 3 | | K3(Ap) | Synthetic
Method | Brainstormin g | YouTube
Video | Peer review
of solved
derivations,
CIA II | | | 4 | The Gamma Functions | 3 | 1 | K3(Ap) | Blended
Learning | Creative thinking | - | Slip Test,
CIA II | | | 5 | Properties of
Bessel Functions | 3 | 1 | K4(An) | Synthetic
Method | Think Pair
Share | - | Simple
Questions,
CIA II | | V | THE EX | ISTENCE AND UN | NIQUENES | S OF SOLUTI | ONS | | | | | | | 1 | The Existence and Uniqueness of Solutions | 3 | 1 | K1(R) | Heuristics
Method | Concept
Mapping | - | Conceptual
quiz, CIA II | | | 2 | The Method of Successive Approximations | 3 | | K2(U) | Integrative method | Problem Based Learning | - | MCQs,
CIA II | | | 3 | Picard's Theorem | 3 | | K3(Ap) | Flipped
Classroom | Inquiry
Based
Learning | YouTube
Video | Slip Test,
CIA II | | 4 | Systems of the | 3 | 2 | K3(Ap) | Seminar | Creative | - | Concept | |---|------------------|---|---|--------|----------------|----------|---|---------------| | | Second Order | | | | Presentation | thinking | | explanations, | | | Linear Equations | | | | | | | CIA II | | 5 | Problems on | 3 | | K4(An) | Seminar | Guided | - | Discussion- | | | Systems of the | | | | Presentation,P | problem | | based | | | Second Order | | | | roblem-Based | solving | | evaluation on | | | Linear Equations | | | | Learning | sessions | | implications, | | | 1 | | | | | | | CIA II | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability, Skill Development Activities (Em / En /SD): Hands on Training on Problem solving Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Assignment: **Problems on Systems of the Second Order Linear Equations**. (Last date to submit – example: 15-10-2025) Seminar Topics: The Existence and Uniqueness of Solutions, The Method of Successive Approximations, Picard's Theorem, Systems of the Second Order Linear Equations, Problems on Systems of the Second Order Linear Equations #### **Sample questions** #### Part A - 1. What is the degree of the ordinary differential equation $\sqrt{(y'+y)} = \sin x$? (K1-R, CO-1) - a) 2 - b) 3 - c) 1 d) 4 - 2. What is the complementary function of the differential equation $(D^2 + 9) = \cos x$? (K4-An, CO-4) - a) $y = Ae^{3x} \cos 3x$ - b) $y = A\cos 3x + B\sin 3x$ c) $$y = (A + B) \sin 3x$$ d) $y = A\cos^3 x + B\sin^3 x$ 3. What are the integrals of complementary function of the differential equation y'' + Py' + Qy = X if $$1 + P + Q = 0$$? (K3-Ap, CO-3) - 4. What does Charpit's method provide in the context of differential equations? (K2-R, CO-2) - (a) a general method of solving any differential equation. - (b) a general method of solving any partial differential equation. - (c) general method of solving any partial differential equation of first order. - (d) a general method of solving any partial differential equation of second order. - 5. **State True or False:** The orthogonal trajectories of the family of circles $x^2+y^2=a^2$ is the family of straight lines not passing through the origin. **(K3-Ap, CO-3)** #### Part B (3 marks) - 1. Solve $(x^2 + y^2 + x)x
+ xydy = 0$. (K1-R, CO-1) - 2. Evaluate the particular integral of the differential equation $(D^2 + 9) = 4\sin 3x$. (K4-An, CO-4) - 3. Solve y'' + y = cosec x by the method of variation of parameters. (K3-Ap, CO-3) - 4. Find the general solution of $p + 3q = 5z + \tan(y 3x)$. (K3-Ap, CO-3) - 5. Find the orthogonal trajectories of the family of curves given by $r = a sin \theta$. (K4-An, CO-4) #### **PART-C** - 1. Solve dy/dx = (x y + 1)/(x + y + 3) (K3-Ap, CO-3) - 2. Solve $(2x + 1)^2 y'' 2(2x + 1)y' 12y = 6x$. (K4-An, CO-4) - 3. By the method of variation of parameter solve $y'' 2y' + y = e^{x}logx$. (K3-Ap, CO-3) - 4. Solve $(p^2 + q^2) = qz$. (K1-R, CO-1) - 5. A tank contains 100 litres of fresh water. Salt water which contains 2 grams of salt per litre flows into the tank at the rate of 2 litres per minute. The mixture runs out at the same rate. How long will it take for the quantity of salt in the tank to increase from 50 to 100 grams? (K3-Ap, CO-3) **Head of the Department** **Course Instructor** Dr. M. K. Angel Jebitha Dr. V. Sujin Flower Class : I M.Sc. Mathematics Title of the Course : Elective Course I C): Programming in C++ Semester : I Course Code : MP231EC3 | Course Code | L | Т | P | Credits | Inst. | Total | | | | | |-------------|---|---|---|---------|-------|-------|-----|----------|-------|--| | Course Coue | | | | | Hours | Hours | CIA | External | Total | | | MP231EC3 | 4 | 1 | - | 3 | 5 | 75 | 25 | 75 | 100 | | # **Learning Objectives** 1. To apply mathematical concepts in programming 2. To create programs and applications #### **Course outcomes** | СО | Upon completion of this course, the students will be able to: | Cognitive level | |-----|---|-----------------| | CO1 | understand and analyze the concepts of tokens, expressions and control structures | K1 | | CO2 | develop the knowledge in functions and arguments | K2 | | СОЗ | solve simple programs using classes and objects in C++ | К3 | | CO4 | apply the properties of constructors and destructors to solve programs | K4 | | CO5 | create programs and applications using C++ | K5 | # K1 - Remember; K2 - Understand; K3- Apply; K4 - Analyse; K5 - Evaluate; Total contact hours*: 75 (Including lectures, assignments and tests) | Unit | Module | Topic | Teaching
Hours | Assess
ment
Hours | Cognitive level | Pedagogy | Student
Centric
Methods | E-Resources | Assessment/ Evaluation | |------|--------|--|-------------------|-------------------------|-----------------|---|---|---|---| | Ι | BEGINN | ING WITH C++ & T | TOKENS, E | XPRESS | IONS AND | CONTROL S | STRUCTURES | | | | | 1. | What is C++, Applications of C++ | 2 | 1 | K1 | Brainstorm ing & Discussion | Participative Learning: Students list real-life applications of C++ | - | MCQ and Oral
Q&A, CIA I | | | 2. | A simple C++ Programme, More C++ Statements, An Example with Class | 2 | | K2 & K3 | Case-
Based
Method,
Problem-
solving,
Analytic
Method | Group Discussion and presenting solution | Interactive Power Point Presentation, E- notes, Video Tutorials | Teach-back, Slip Test, Writing a basic C++ class- based program, CIA I | | | 3. | Structure of C++ Programme, Creating the Source File, | 2 | | K2 & K3 | Discussion,
Synthetic
Method, | Experiential Learning: Hands-on demo Simulation- | Power Point
Presentation, E-
notes, Video
Tutorials | Think-Pair-Share,
Questioning,
Create and | | | | Compiling and Linking | | | | Inductive
Method | Based Exploration, Group Work and Presentations, Compare and Connect. | | compile a program, CIA I | |----|----------|--|---|----------|-------------|--|--|--|--| | | 4. | Token and
Keyword,
Identifiers and
Constants | 3 | 1 | K1, K3 & K5 | Heuristic
Method,
Inductive
Method,
Deductive
Method | Hands on
training, Peer
Teaching,
Concept
mapping, | Interactive Power Point Presentation, E- notes, Video Tutorials, Interactive Quizzes | Interactive
quizzes on
tokens; identify
errors Worksheets
and Homework,
CIA I | | | 5. | Basic Data Type,
User-Defined Data
Types & Control
Structures | 3 | 1 | K1, K3 & K5 | Chalk-and-talk, Flipped Classroom, Inquiry- Based Learning, Group Discussion | Participative Learning: Write code using loops and decision structures | Interactive Power Point Presentation, E- notes, Video Tutorials, Interactive Quizzes | Slip Test, Quiz
and Short Coding
writing, CIA I | | II | FUNCTION | ONS IN C++ | I | <u>I</u> | | <u> </u> | | | 1 | | | 1. | Introduction | 1 | 1 | K1 | Brainstorm ing & Discussion | Participative
Learning:
Students list | E-notes | Oral presentation,
CIA I | | | | | | | | functions of C++ | | | |----|--|---|---|-------------|--|---|---|--| | 2. | The Main Function & Function Prototyping | 2 | | K2, K3 & K5 | Flipped
Classroom,
Case-
Based
Method,
Problem-
solving,
Analytic
Method | Experiential Learning: Simulation- Based Exploration, example from math | Power Point
Presentation, E-
notes, Video
Tutorials | Short summary,
Code Recalling,
Quiz, CIA I | | 3. | Call by Reference
& Return by
Reference | 2 | 1 | K2, K3 & K5 | Chalk-and-talk, Flipped Classroom, Inquiry- Based Learning, Group Discussion | Participative Learning, Problem- solving. Code swap using call by reference | Power Point
Presentation, E-
notes, Video
Tutorials | Concept
explanation, Peer-
assessed problem
explanation, Mid-
unit test, CIA I | | 4. | Inline Functions, Defaults Arguments, Const Arguments & Function Overloading | 4 | 1 | K2, K3 & K5 | Illustrative
Method,
Lecture,
Collaborati
ve
Learning | Experiential Learning: Demonstrate function overloading Problem Solving | Power Point
Presentation, E-
notes, Video
Tutorials, Live
Demos | Debugging Code,
Socrative Poll,
CIA I | | | 5. | Friend and Virtual
Functions & Math
Library Functions | 3 | | K2, K3 & K5 | Inductive Method, Case- Based Method, Problem- solving, Analytic Method | Participative Learning, Problem- solving: Writing sample virtual function with output | Power Point
Presentation, E-
notes, Video
Tutorials | Mini program
Review, CIA I | |-----|----|---|---|---|-------------|--|---|---|---| | III | 1. | S Introduction | 1 | 1 | K1 | Flipped
Classroom,
Case-
Based
Method,
Problem-
solving,
Analytic
Method | Participative Learning: Write sample virtual function with output | E-notes | Quiz, CIA I | | | 2. | C Structures
Revisited &
Specifying a Class | 2 | | K2 & K5 | Chalk-and-talk, Programme Writing, Analytic Method, Inductive Method | Participative Learning: Converting C++ structure to C++ class | SLO, Power
Point
Presentation, E-
notes, Video
Tutorials, Live
Demos | Concept-check
quiz, Group Code
writing,
Reflective
writing, CIA I | | | 3. | Defining
Membership
Functions & A | 3 | | K2 & K5 | Lecture with discussion, Deductive | Experiential
Learning:
Hands on | Power Point
Presentation, E-
notes, Video | Slip Test, Teach-
back, Mini- | | | | C++ Program with
Class | | | | Method,
Programme
Writing,
Group
Discussion | training on
class-based
program | Tutorials, Live
Demos | programme
writing, CIA II | |----|--------|--|---|---|---------|---|---|---|--| | | 4. | Making an Outside
Function Inline &
Nesting of Member
Functions | 3 | 1 | K2 & K5 | Socratic
Method,
Group
Discussion,
Problem-
solving in
groups | Experiential Learning: Nested function output, Peer teaching | Power Point
Presentation, E-
notes, Video
Tutorials, Live
Demos | Simple
Programme
Writing, CIA II | | | 5. | Private Member
Functions &
Arrays with a
Class | 3 | 1 | K2 & K5 | Problem-
Solving
Method,
Heuristic
Method,
Deductive
Method | Participative Learning: Group discussion, peer learning, Creatting a class handling student
marks array | Power Point
Presentation, E-
notes, Video
Tutorials, Live
Demos | Small-group
discussion around
conceptual
MCQs, CIA II | | IV | OBJECT | S | | • | 1 | | | | | | | 1. | Memory
Allocation for
Objects | 2 | 1 | K1 | Brainstorm
ing, Group
Discussion | Participative Learning: Think- pair and share, Compare memory usage between objects | - | Think-Pair-Share.
Small-group
discussion, CIA II | | 2. | Static Data
Member & Static
Member Functions | 3 | | K1, K3 & K5 | Chalk-and-talk, Case-Based Learning, Illustrative method, Flipped Classroom | Experiential Learning: Hands on training on Code static data member | SLO, Power
Point
Presentation, E-
notes, Video
Tutorials | Concept mapping,
Recalling Steps,
Recalling
Formula, CIA II | |----|---|---|---|-------------|--|--|---|--| | 3. | Arrays of Objects,
Objects as
Function
Arguments &
Friendly Functions | 3 | 1 | K3 & K5 | Illustrative method, Analytic Method, Socratic Method, Inductive Method, Problem- Solving Method | Participative Learning: Hands on training on programme Writing | Interactive
PPT, E-notes,
Video
Tutorials, Live
Demos | Recalling Formula, Home assessment, Group problem- solving, Write object array and use in function. CIA II | | 4. | Returning Objects
& Constant
Member Functions | 2 | | K1, K3 & K5 | Collaborati ve learning, Project- Based Learning, Illustrative method, Flipped Classroom | Participative Learning: Hands on training on return object from function, Problem- solving | SLO, Power
Point
Presentation, E-
notes, Video
Tutorials, Live
Demos | Worksheets,
Assignment,
Concept-check
quiz, Assignment,
CIA II | | | 5. | Pointers of
Members & Local
Classes | 2 | 1 | K1, K3 & K5 | Chalk-and-
talk, Case-
Based
Learning,
Illustrative
method | Experiential Learning: Demonstration on to create local class, Programme Writing, Group Coding Tasks | Power Point
Presentation, E-
notes, Video
Tutorials, Live
Demos | Writing mini
member
functions, Design
Classes,
Assignment, CIA
II | |---|--------|--|----------|----|-------------|---|---|---|---| | V | CONSTR | L
RUCTORS AND DES | STRUCTOI | RS | | 1 | County Tusks | l | | | | 1. | Introduction, Constructors & Parameterized Constructors | 2 | 1 | K4 | Chalk-and-talk, Collaborative Learning, Flipped Classroom | Participative Learning: Programme writing with constructors, Debugging code, Discussion, Problem- solving | Power Point
Presentation, E-
notes, Video
Tutorials, Live
Demos | Collaborative
worksheet, Peer-
assessed problem
explanation,
CIA II | | | 2. | Multiple constructors in a class & Constructors with Default Arguments | 3 | | K4 | Socratic
Method,
Group
Discussion,
Problem-
solving in
groups | Experiential
learning: Hands
on training on
the usage of
multiple
constructors,
Discussions,
peer learning | Power Point
Presentation, E-
notes, Video
Tutorials, Live
Demos | Concept explanations, Oral presentation of multiple constructors and run the programme and identifying errors, CIA II | | | 3. | Dynamic
Initialization of | 3 | 1 | K4 & K5 | Lecture with | Problem-
solving: Group | Power Point
Presentation, E- | Questioning,
Mid-unit test, | | | Objects & Copy | | | | illustration, | work, Project | notes, Video | Concept-check, | |----|------------------|---|---|---------|---------------|------------------|------------------|-------------------| | | Constructor | | | | Analytic | based learning | Tutorials, Live | Group quiz, | | | | | | | Method, | in copy | Demos | CIA II | | | | | | | Socratic | constructor by | | | | | | | | | Method, | duplicate object | | | | | | | | | Inductive | | | | | | | | | | Method | | | | | 4. | Dynamic | 2 | 1 | K4 & K5 | Chalk-and- | Participative | Power Point | Recall steps, | | | Constructors- | | | | talk, | Learning: | Presentation, E- | Teach-back, Open | | | Constructing Two | | | | Problem- | Coding to | notes, Video | Seminar, Home | | | & Dimensional | | | | Solving | create 2D | Tutorials, Live | Assessment, | | | Arrays | | | | Method, | dynamic array, | Demos | CIA II | | | | | | | Heuristic | Peer learning | | | | | | | | | Method, | | | | | | | | | | Deductive | | | | | | | | | | Method | | | | | 5. | Constant Objects | 2 | | K4 & K5 | Live | Experimental | Power Point | Teach-back, | | | & Destructors | | | | Coding, | Learning: | Presentation, E- | Simple code | | | | | | | Programmi | Demonstration | notes, Video | Recalling, CIA II | | | | | | | ng by | on destructor | Tutorials, Live | | | | | | | | demonstrat | execution | Demos | | | | | | | | ion | order, | | | | | | | | | | Debugging | | | | | | | | | | code | | | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability and Skill Development Activities (Em/ En/SD): Poster Presentation and Short Video Presentation Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Assignment: Pointers of Members & Local Classes (Due Date 01-09-2025) Seminar Topic: Constructors and Destructors #### Sample questions Part A (1 Mark) - 1. Which of the following is not a C++ token? (K1-R, CO-1) - a) Keywords b) Constants c) Operators d) Arrays - 2. What is the keyword used to define an inline function? (K2-U, CO-2) - a) define b) inline c) static d) call - 3. Identify the statement: A class can have multiple constructors with different parameters. (True/False)(K2-U, CO-2) - 4. Recognize the keyword used for inheritance in C++ (K2-U, CO-2) - a) class b) extends c) virtual d): (colon) - 5. Fill: Operator overloading is done using the _____ keyword (K1-R, CO-1) Part B (6 Marks) - 1. Classify the different data types in C++. (K4-An, CO-4) - 2. Differentiate between overloaded functions and inline functions (K2-U, CO-2) - 3. Explain how the 'this' pointer works in C++ (K3-Ap, CO-3) - 4. Explain why constructors are not inherited (K4-An, CO-4) - 5. Explain the concept of operator overloading with an example. (K4-An, CO-4) Part C (12 Marks) 1. Compare entry-controlled and exit-controlled loops with examples.(K2-U, CO-2) - 2. Evaluate the benefits and limitations of using default arguments. (K2-U, CO-2) - 3. Construct a class named Rectangle with private data members and public member functions to calculate area and perimeter. (K3-Ap, CO-3) - 4. Critique the use of virtual base classes with examples (K5-E, CO-5) - 5. Describe the advantages of polymorphism in object-oriented system (K4-An, CO-4) Head of the Department Course Instructor Dr. M.K. Angel Jebitha Dr. S.Sujitha Class : I M.Sc Mathematics Title of the Course : ELECTIVE COURSE II: c) FUZZY SETS AND THEIR APPLICATIONS Semester : I Course Code : MP231EC6 | Course Code | L | Т | P | S | Credits | Inst. | Total
Hours | | Marks | | |-------------|---|---|---|---|---------|-------|----------------|-----|----------|-------| | | | | | | | Hours | Hours | CIA | External | Total | | MP231EC6 | 4 | 1 | - | - | 3 | 5 | 75 | 25 | 75 | 100 | ## **Learning Objectives** 1.To study about Fuzzy sets and their relations, Fuzzy graphs, Fuzzy Relations. 2. To gain knowledge on Fuzzy logic and laws of Fuzzy compositions ## **Course Outcomes** | CO | Upon completion of this course, the students will be able to: | Cognitive
level | |--------|--|--------------------| | CO - 1 | understand the definition of Fuzzy sets and its related concepts | K1(R), K2(U) | | CO - 2 | define Fuzzy Graphs and can explain the concepts | K3(Ap) | | CO - 3 | explain the concepts in Fuzzy sets and its relations | K3(Ap) | | CO - 4 | discuss about Fuzzy logic | K2(U) | | CO - 5 | analyze the compositions of Fuzzy sets. | K4(An) | K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5- Evaluate **Total Contact hours: 75 (Including lectures, assignments and tests)** | Unit | Module | Topic | Teaching
Hours | Assessment
Hour | Cognitive
level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/
Evaluation
Methods | |------|---------|---|-------------------|--------------------|--------------------|---|---|---|---| | Ι | Fundame | ental Notions | | | | | l | 1 | 1 | | | 1 | Review of set theory
and characteristic
functions | 1 | 1 | K1(R) | Lecture, Socratic Questioning, Interactive Problem Solving | Think-Pair-
Share, quick
scenario
analysis,
Group
Discussion | PPT, Video
Lectures,
Online Notes | Quiz, Written
Assignment,
Oral
Presentation,
CIA I | | | 2 | Definition and concept
of fuzzy subsets | 3 | | K2(U) | Lecture,
Visual Aids,
Problem
Solving | Peer Teaching,
Jigsaw
Method,
Guided
Worksheets | PPTs, Video
Lectures,
Interactive
Apps | Quiz,
Worksheet,
Oral
Presentation,
CIA I | | | 3 | Membership functions and their properties | 3 | 1 | K4(An) | Collaborative
Group Work,
Inquiry-
Based
Learning | cooperative
activities
involving pairs
and small
groups, Group
Presentations | PPT, Video
Lectures,
Online Notes | Simple
definitions,
MCQ, Recall
steps, Concept
definitions,
CIA I | | | 4 | Comparison between crisp and fuzzy sets | 3 | | K4(An) | Collaborative
Learning | Think-Pair-
Share, Peer
Learning | PPT
Presentation | Evaluation
through short
test,
Information
gap activities
and problem- | | | 5 | Examples and applications of fuzzy subsets | 2 | 1 | K3(Ap) | Lecture with
Illustration,
Problem-
Based
Learning | Peer Teaching,
Think-Pair-
Share,
Discussion | Video Lectures | solving tasks, CIA I Quizziz, solving complex problems, CIA I | |---|----------|---|---|---|--------|--|---|---|---| | П | Fuzzy Gi | Definition and types of fuzzy graphs | 2 | 1 | K1(R) | Lecture,
Visual Aids,
Problem
Solving | Think-Pair-
Share, Peer
Teaching,
Group
Discussion | PPT, Video
Lectures,
Online Notes | Quiz, Written
Assignment,
Oral
Presentation,
CIA I | | | 2. | Operations on fuzzy graphs | 3 | | K2(U) | Inquiry-
Based
Learning,
Jigsaw
Method | Formulating questions, discussing research plans, Concept Mapping | PPT
Presentation | Quiz,
Worksheet,
Group
Presentation,
CIA I | | | 3. | Representation of fuzzy graphs | 2 | 1 | K2(U) | Lecture with
Illustration,
Flipped
Classroom | In-class discussions, group activities, Q&A with instructor | Video
Lectures,
Online Notes | Evaluation
through quiz
test using
quizziz, MCQ,
Recall steps,
CIA I | | | 4. | Applications of fuzzy graphs in decision making | 3 | 1 | K3(Ap) | Lecture,
Visual Aids,
Problem
Solving | Think-Pair-Share, Peer Teaching, Collaborative problem-solving sessions | PPT, Video
Lectures,
Online Notes | Quiz, Written
Assignment,
Oral
Presentation,
CIA I | | | 5. | Fuzzy graph
algorithms and
connectivity | 2 | | K4(An) | Lecture, Socratic Questioning, Interactive Problem Solving | Peer Teaching,
Think-Pair-
Share,
Discussion | Video Lectures | Quiz test,
CIA I | |-----|----------|--|---|---|--------|---|--|---|--| | III | Fuzzy Re | lations | | | | | | | | | | 1. | Definition and properties of fuzzy relations | 2 | 1 | K1(R) | Lecture, Socratic Questioning, Interactive Problem Solving | Think-Pair-
Share, Peer
Teaching,
Group
Discussion | PPT, Video
Lectures,
Online Notes | Quiz, Written
Assignment,
Oral
Presentation,
CIA I | | | 2. | Composition of fuzzy relations | 3 | | K2(U) | Lecture,
Visual Aids,
Problem
Solving | Peer Teaching,
Jigsaw
Method,
Guided
Worksheets | PPTs, Video
Lectures,
Interactive
Apps | Quiz,
Worksheet,
Oral
Presentation,
CIA I | | | 3. | Inverse and reflexive fuzzy relations | 2 | 1 | K2(U) | Collaborative
Group Work,
Inquiry-
Based
Learning | Debates, Group
Presentations | PPT, Video
Lectures,
Online Notes | Simple definitions, MCQ, Recall steps, Concept definitions, CIA II | | | 4. | Transitive closure and fuzzy equivalence relations | 3 | 1 | K4(An) | Lecture with Illustration, Problem-Based Learning | Think-Pair-
Share, Peer
Learning,
brainstorming | PPT
Presentation | Evaluation
through short
test, CIA II | | | 5. | Applications of fuzzy relations in data analysis | 2 | | K3(Ap) | Blended
Learning,
Gamification | Online discussions, collaborative documents, Applying skills in a game context | Video Lectures | Quizz test,
CIA II | |----|----|--|---|---|--------|--|---|---|--| | IV | 6. | Propositional logic and fuzzy logic basics | 2 | 1 | K1(R) | Lecture,
Problem
Solving,
Blended
Learning | Online problem sets, collaborative problem-solving tools, Peer Teaching, Group Discussion | PPT, Video
Lectures,
Online Notes | Quiz, Written
Assignment,
Oral
Presentation,
CIA II | | | 7. | Laws and operations in fuzzy logic | 3 | | K2(U) | Lecture with Visual Aids, Jigsaw Method, Inquiry- Based Learning | Think-Pair-Share, Formulating questions, discussing research plans | PPT
Presentation | Quiz,
Worksheet,
Group
Presentation,
CIA II | | | 8. | Implication and inference in fuzzy logic | 3 | 1 | K4(An) | Lecture with
Illustration,
Flipped
Class,
Concept
Mapping | In-class
discussions,
group
activities,
Q&A with
instructor | Video
Lectures,
Online Notes | Evaluation
through quiz
test using
quizziz,
Seminar,
MCQ, Recall
steps, CIA II | | | 9. | Fuzzy reasoning and approximate reasoning | 2 | 1 | K4(An) | Lecture, Problem- Based Learning | Think-Pair-
Share, Peer
Teaching,
solving
complex
problems | PPT, Video
Lectures,
Online Notes | Quiz, Written
Assignment,
Oral
Presentation,
CIA II | |---|---------|---|---|---|--------|---|---|---|--| | | 10. | Applications in control systems and AI | 2 | | K3(Ap) | Lecture, Socratic Questioning, Interactive Problem Solving | Peer Teaching,
Think-Pair-
Share,
Discussion | Video Lectures | Slip Test,
CIA II | | V | The Law | s of Fuzzy Composition | | | | | | | | | | 11. | Composition of fuzzy sets and relations | 2 | 1 | K1(R) | Lecture, Socratic Questioning, Interactive Problem Solving | Think-Pair-
Share, Peer
Teaching,
Group
Discussion | PPT, Video
Lectures,
Online Notes | Quiz, Written
Assignment,
Oral
Presentation,
CIA II | | | 12. | Max-min and max-
product compositions | 2 | | K2(U) | Lecture,
Visual Aids,
Problem
Solving | Peer Teaching,
Jigsaw
Method,
Guided
Worksheets | PPTs, Video
Lectures,
Interactive
Apps | Quiz,
Worksheet,
Oral
Presentation,
CIA II | | | 13. | Associativity and commutativity in fuzzy compositions | 3 | 1 | K4(An) | Collaborative
Group Work,
Inquiry-
Based
Learning | Debates, Group
Presentations | PPT, Video
Lectures,
Online Notes | Simple definitions, MCQ, Recall steps, Concept definitions, CIA II | | 14. | Fuzzy equivalence and compatibility relations | 3 | 1 | K4(An) | Lecture with
Illustration,
Flipped
Classroom | Think-Pair-Share, Peer Learning, Inclass discussions, group activities, Q&A with instructor | PPT
Presentation | Evaluation
through short
test, CIA II | |-----|---|---|---|--------|---|---|---------------------|---| | 15. | Applications in fuzzy decision making | 2 | | K3(Ap) | Lecture with Illustration, Group Discussion, | Peer Teaching,
Think-Pair-
Share,
Discussion | Video Lectures | Slip Test using
Quizziz, CIA II | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development Activities (Em/ En/SD): Gamified quiz using fuzzy terms and concepts Assignment : Solving Problems on Fuzzy Logic (Last date to submit: 26-09-2025) Seminar Topic: Laws of Fuzzy Composition # Sample questions Part A (1 mark) - 1. The fuzzy intersection is computed using - a) Sum b) Product c) Maximum d) Minimum - 2. A fuzzy graph is a pair a) $$(V, E)$$ b) (V, μ) c) (V, μ_V, μ_E) d) (μ_V, μ_E) 3. A fuzzy relation is defined on: - a) Single set b) Cartesian product of sets c) Set of numbers d) A real line - 4. Fuzzy logic deals with - a) True and false only b) Degrees of truth c) Probability d) Boolean operations - 5. The composition of fuzzy relations uses - a) Logical OR b) Arithmetic Mean c) Max-Min operations d) Sum of squares ## Part B (3 marks) - 1. State and prove Decomposition Theorem. - 2. Define a fuzzy graph with example. - 3. What are reflexive, symmetric and transitive fuzzy relations? - 4. Explain the truth value and its range in fuzzy logic. - 5. Write short notes on transitive closure in fuzzy systems. #### Part C (7 marks) - 1. Explain the concept of fuzzy subset with suitable examples and notations. - 2. Discuss union, intersection, and complement of fuzzy graphs. - 3. Discuss fuzzy relation properties: reflexivity, symmetry and transitivity. - 4. Define fuzzy logic and explain all logical
operations with examples. - 5. Prove and illustrate the associative law in fuzzy composition. **Head of the Department** Dr. M. K. Angel Jebitha **Course Instructor** Dr. A. Jancy Vini Class : II M. Sc. Mathematics Title of the Course : Core Course VII : Complex Analysis Semester : III Course Code : MP233CC1 | Course Code | T | Т | p | Q | Credits | Inst. Hours | Total Hours | | Marks | | | |-------------|---|---|---|---|---------|-------------|---------------|-----|----------|-------|--| | Course Couc | L | 1 | 1 | 3 | Cicuits | mst. mours | 1 otal 11ours | CIA | External | Total | | | MP233CC1 | 6 | - | - | ı | 5 | 6 | 90 | 25 | 75 | 100 | | ## **Learning Objectives:** - To understand the fundamental concepts and theorems of complex analysis, including Cauchy's Integral Formula, Taylor's Theorem, and the Residue Theorem. - To develop proficiency in applying complex analysis techniques to solve problems involving harmonic functions, power series expansions, and entire functions. ### **Course Outcomes** | CO | Upon completion of this course, the students will be able to: | Cognitive Level | |--------|--|-----------------| | CO - 1 | demonstrate the ability to compute line integrals over rectifiable arcs and apply Cauchy's Theorem to evaluate integrals in various domains. | K2, K3 | | CO - 2 | analyze the local properties of analytic functions, including removable singularities, zeros, poles, and the Maximum Principle. | K4 | | CO - 3 | apply the calculus of residues to evaluate definite integrals and utilize harmonic functions to solve boundary value problems using Poisson's Formula and Schwarz's Theorem. | K3, K5 | | CO - 4 | construct power series expansions using Weierstrass's Theorem and apply partial fractions and factorization techniques to manipulate complex functions. | K3, K6 | CO - 5 interpret and apply advanced concepts such as Jensen's Formula and Hadamard's Theorem to analyze the behavior of entire functions and infinite products. K3, K4 K1 - Remember; K2 - Understand; K3- Apply; K4 - Analyse; K5- Evaluate **Total Contact hours: 90 (Including lectures, assignments and tests)** | 100 | Total Contact hours: 90 (Including fectures, assignments and tests) | | | | | | | | | | |------|---|--|-------------------|---------------------|--------------------|--|---|---|---|--| | Unit | Module | Topic | Teaching
Hours | Assessment
Hours | Cognitive
Level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/ Evaluation Methods | | | Ι | COMPLI | EX INTEGRATION | AND CAU | CHY'S INTE | GRAL FOR | MULA | l | | | | | | 1. | Line Integrals | 2 | 1 | K2(U) | Interactive Method
Synthetical Method | Interaction Lateral Thinking Think-Aloud | E-material Interactive PPT Video Lectures | Questioning Quiz Game Concept | | | | | | | | | | Memory Game | Zoom Google Classroom LMS Kahoot | Explanation One Minute Paper CIA I | | | | 2. | Rectifiable Arcs | 1 | | K2(U) | Illustrative Method | Visualize the
Concept
Narration of the
Problem | E-material Interactive PPT Video Lectures Zoom LMS Google Classroom | Concept Explanation Exit Ticket CIA I | | | | 3. | Line Integrals as
Functions of Arcs | 3 | | K2(U) | Analytical Method
Heuristic Method | Breakdown the
Problem
Creating
Solutions | E-material Interactive PPT Video Lectures Zoom LMS | Construction of Proof Dictation Problem Solving Slip Test | | | | | | | | | | Google | Exit Ticket | |----|--------------------|---|---|--------|---------------------|------------------|-----------------|------------------| | | | | | | | | Classroom | CIA I | | 4. | Cauchy's Theorem | 2 | 1 | K2(U), | Constructive | Mind Map | E-material | Proof Recitation | | | for a Rectangle | | | K3(Ap) | Method | Describing | Interactive PPT | Step-by-step | | | | | | | Socratic Method | Method | Video Lectures | Solutions | | | | | | | Illustrative Method | Lateral Thinking | Zoom | Class Test | | | | | | | Demonstration | Interaction | LMS | Concept | | | | | | | Case Studies | Analyze the | Google | Cartoon | | | | | | | | Problem | Classroom | CIA I | | | | | | | | Peer Teaching | | | | 5. | Cauchy's Theorem | 1 | | K2(U), | Inquiry based | Think-pair-share | E-material | Deriving Steps | | | in a Disk | | | K3(Ap) | Learning | Jigsaw Method | Interactive PPT | Proof Relay | | | | | | | Algorithmic | Breakdown the | Video Lectures | Generate | | | | | | | Approach | Problem | Zoom | Solutions | | | | | | | Illustrative Method | Lateral Thinking | LMS | Concept | | | | | | | Demonstration | | Google | Mapping | | | | | | | | | Classroom | Exit Ticket | | | | _ | | | | | | CIA I | | 6. | The index of a | 3 | 1 | K3(Ap) | Illustrative Method | Visualize the | E-material | Quiz | | | point with respect | | | | Inductive Method | Concept | Interactive PPT | Concept Relay | | | to a curve | | | | | Think-pair-share | Video Lectures | Match the | | | | | | | | | Zoom | Following – | | | | | | | | | Quizziz | Gamma | | | | | | | | | LMS | Exit Ticket | | | | | | | | | Google | CIA I | | | | | | 770(1) | |) C 1) C | Classroom | D 11 G | | 7. | Cauchy's Integral | 2 | | K3(Ap) | Deductive Method | Mind Map | E-material | Recall Steps | | | formula | | | | Heuristic Method | Creative | Interactive PPT | Proof | | | | | | | | Thinking | Video Lectures | Generating | | | | | | | | Jigsaw Method | Zoom | | | | | | | | | | Proof Drafting | LMS
Google
Classroom | Step-by-step Solutions Slip Test Exit Ticket CIA I | |----|---------|--|-----------|-----------|---------|--|--|--|---| | | 8. | Higher Derivatives | 3 | | K3(Ap) | Constructive
Method
Algorithmic
Approach | Breakdown the
Problem
Analyze the
Situation
Mind Map | E-material Interactive PPT Video Lectures Zoom LMS Google Classroom Flip Classroom | Step-by-step Solutions Explanation Questioning Exit Ticket CIA I | | II | LOCAL I | PROPERTIES OF A | NALYTIC I | FUNCTIONS | AND THE | GENERAL FORM | OF CAUCHY'S T | HEOREM | | | | 1. | Local Properties of
Analytic Function | 2 | 1 | K4(An) | Flipped Classroom
Interactive Method
Synthetical Method | Discussion on the Materials Referred Interaction Creating Solutions Analyze the Problem Lateral Thinking | E-material Interactive PPT Video Lectures Zoom LMS Google Classroom | Concept Sharing Proof Idea Generating Theorems Recitation Exit Ticket CIA I | | | 2. | Zeros and Poles | 2 | | K4(An) | Brainstorming Interactive Method Heuristic Method Deductive Method Socratic Method | Brainstorming Interaction Lateral Thinking Using Techniques for | E-material Interactive PPT Video Lectures Zoom LMS | Concept Sharing Generate Solutions Problem Solving Quiz Game Exit Ticket | | | | | | | | Solving
Problems | Google
Classroom | CIA I | |----|--------------------------|---|---|--------|--|---|---|---| | 3. | The Local
Mapping | 2 | 1 | K4(An) | Computational Thinking Inquiry based Learning Socratic Method | Breakdown the
Problem
Lateral Thinking
Jigsaw Method | E-material Interactive PPT Video Lectures Zoom Socrative LMS Google Classroom | Questioning Proof Explanation Concept Sharing MCQ Exit Ticket CIA I | | 4. | The Maximum
Principle | 2 | | K4(An) | Brainstorming
Flipped Classroom
Deductive Method
Debate | Brainstorming Discussion on the Materials Referred Using Techniques for Solving Problems Think-pair-share | E-material Interactive PPT Video Lectures Zoom LMS Google Classroom | Deriving Steps
for Proof
Relay Race
Concept
Mapping
Exit Ticket
CIA I | | 5. | Chains and Cycles | 2 | 1 | K4(An) | Flipped Classroom | Discussion on
the Materials
Referred | E-material Interactive PPT Video Lectures Zoom Google Form LMS Google Classroom | Quiz
Questioning
Exit Ticket
CIA I | | 6. | Simple
Connectivity | 2 | | K4(An) | Algorithmic
Approach | Breakdown the Problem | E-material
Interactive PPT | Slip Test | | | 7. | Homology, The | 2 | | K4(An) | Demonstration Flipped Classroom | Mind Map Concept Mapping Discussion on | Video Lectures Zoom LMS Google Classroom E-material | Step-by-step Solutions Slip Test Exit Ticket CIA I Proof Writing | |-----|---------|---------------------------------------|---------|----------|---------|---|---|---|--| | | 7. | General Statement of Cauchy's Theorem | 2 | | K4(An) | Interactive Method | the Materials Referred Interaction Mind Map Analyze the Problem | Interactive PPT Video Lectures Zoom LMS Google Classroom Flip |
Concept Mapping CIA I | | III | THE CAI | LCULUS OF RESID | UES AND | HARMONIC | FUNCTIO | NS | | | _ | | | 1. | The Residue Theorem | 3 | 1 | K5(E) | Computational Thinking Algorithmic Approach Analytical Method Socratic Method | Breakdown the Problem Using Techniques for Solving Problem Jigsaw Method Analyze the Situation Error Analysis | E-material Interactive PPT Video Lectures Zoom LMS Google Classroom Google Form | Concept Sharing Questioning Problem Solving Quiz Slip Test Concept Cartoon CIA I | | | 2. | The Argument Principle | 2 | | K3(Ap) | Inductive Method Deductive Method Inquiry based Learning | Lateral Thinking Analyze the Problem Deriving Proof | E-material Interactive PPT Video Lectures Zoom LMS | Proof Deriving Concept Mapping Theorems Recitation Slip Test | | | | | | | | | Google | Exit Ticket | |----|---------------------|---|---|---------|--------------------|------------------|-----------------|-----------------| | | | | | | | | Classroom | CIA I | | 3. | Evaluation of | 6 | 1 | K5(E) | Problem based | Lateral Thinking | E-material | Problem Solving | | | Definite Integrals | | | | Learning | Breakdown the | Interactive PPT | Relay Race | | | | | | | Lecture with | Problem | Video Lectures | Assignment | | | | | | | Illustration | Solving | Zoom | Generate | | | | | | | Demonstration | Problems | LMS | Solutions | | | | | | | Computational | Using | Google | Step-by-step | | | | | | | Thinking | Techniques for | Classroom | Solutions | | | | | | | Algorithmic | Solving | | Questioning | | | | | | | Approach | Problems | | Assignment | | | | | | | Problem Solving | Case Studies | | Overleaf Proof | | | | | | | Heuristic Method | Analyze the | | Submission | | | | | | | | Problem | | CIA I | | | | | | | | Jigsaw Method | | | | 4. | Definition and | 3 | 1 | K3(Ap) | Flipped Classroom | Discussion on | E-material | Concept Sharing | | | Basic Properties of | | | | Synthetical Method | the Materials | Interactive PPT | Generating | | | Harmonic | | | | Deductive Method | Referred | Video Lectures | Proof | | | Functions | | | | | Creating | Zoom | Quiz Game | | | | | | | | Solution | LMS | Concept Relay | | | | | | | | Deriving Proof | Google | Exit Ticket | | | | | | | | | Classroom | CIA II | | | | | | | | | Kahoot | | | 5. | The Mean-Value | 3 | | K3(Ap), | Inquiry based | Breakdown the | E-material | Questioning | | | Property | | | K5(E) | Learning | Problem | Interactive PPT | Slip Test | | | | | | | Algorithmic | Analyze the | Video Lectures | Quiz | | | | | | | Approach | Problem | Zoom, Flip | Class Test | | | | | | | Socratic Method | Interaction | LMS, Socrative | Exit Ticket | | | | | | | | | Google | CIA II | | | | | | | | | Classroom | | | IV | HARMO | NIC FUNCTIONS A | ND POWE | ER SERIES E | XPANSION | IS | | | | |----|-------|-----------------------------|---------|-------------|----------|--|---|--|---| | | 1. | Poisson's Formula | 3 | 1 | K3(Ap) | Analytical Method
Illustrative Method
Computational
Thinking | Jigsaw Method Using Techniques for Solving Problems Interaction | E-material Interactive PPT Video Lectures Zoom LMS Google Classroom | Concept Sharing Generate Solutions Questioning Exit Ticket CIA II | | | 2. | Schwarz's
Theorem | 2 | | K3(Ap) | Algorithmic
Approach
Analytical Method | Breakdown the
Problem
Analyze the
Situation
Jigsaw Method | E-material Interactive PPT Video Lectures Zoom LMS Google Classroom | Slip Test Questioning Concept Explanation Exit Ticket CIA II | | | 3. | The Reflection
Principle | 2 | 1 | K3(Ap) | Flipped Classroom
Brainstorming
Interactive Method | Discussion on
the Materials
Referred
Brainstorming
Think-pair-share | E-material Interactive PPT Video Lectures Zoom LMS Google Classroom Kahoot | Quiz Game Concept Explanation Concept Relay Exit Ticket Open Book Test CIA II | | | 4. | Weierstrass's
Theorem | 2 | | K3(Ap) | Synthetical Method
Inductive Method
Inquiry based
Learning
Flipped Classroom | Lateral Thinking
Mind Map
Proof Narration
Creating
Solutions | E-material Interactive PPT Video Lectures Zoom LMS | Quiz Class Test Questioning Proof Idea Construction Exit Ticket | | | | | | | | | Discussion on
the Materials
Referred | Google
Classroom
Mentimeter | CIA II | |---|--------|---------------------|----------|------------|---------------|---|---|--|---| | | 5. | The Taylor's Series | 3 | 1 | K6(C) | Brainstorming Flipped Classroom Interactive Method Inductive Method | Discussion on
the Materials
Referred
Think-pair-share
Interaction
Visualization | E-material Interactive PPT Video Lectures Zoom LMS Google Classroom | Construction of Examples Recall Steps Assignment Problem Solving Assignment Exit Ticket CIA II | | | 6. | The Laurent Series | 3 | | K6(C) | Brainstorming
Flipped Classroom
Interactive Method | Discussion on
the Materials
Referred
Group
Discussion
Jigsaw Method
Interaction | E-material Interactive PPT Video Lectures Zoom LMS Google Classroom Flip | Construction of Examples Proof Writing Recall Steps Assignment Problem Solving Exit Ticket CIA II | | V | PARTIA | L FRACTIONS AND | FACTORIZ | ZATION ANI | ENTIRE | FUNCTIONS | | | | | | 1. | Partial Fraction | 3 | 1 | K4(An) | Socratic Method
Inquiry based
Learning | Creating Proof Ideas Lateral Thinking Think-pair-share Guided Library References | E-material Interactive PPT You Tube Videos Google Classroom | Presentation Slip Test Exit Ticket Open Book Test CIA II | | | 2. | Infinite Products | 2 | 1 | K4(An) | Heuristic Method
Illustrative Method | Lateral Thinking
Think-pair-share | E-material
Interactive PPT | Presentation
Surprise Test
Exit Ticket | | | | | | | | Describing Proof Guided Library References | You Tube
Videos
Google
Classroom | CIA II | |----|-----------------------|---|---|--------|---|--|---|---| | 3. | Canonical
Products | 2 | | K3(Ap) | Illustrative Method
Deductive Method | Using Techniques for Solving Problem Lateral Thinking Interaction Guided Library References | E-material Interactive PPT You Tube Videos Google Classroom | Presentation
Concept
Explanation
Exit Ticket
CIA II | | 4. | Jensen's Formula | 2 | 1 | K4(An) | Algorithmic Approach Inquiry based Learning | Breakdown the Problem Analyze the Problem Creating Solutions Think-pair-share Mind Map Guided Library References | E-material Interactive PPT You Tube Videos Google Classroom | Presentation Proof Narration Exit Ticket Open Book Test CIA II | | 5. | Hadamard's
Theorem | 3 | | K4(An) | Algorithmic Approach Demonstration Debate | Breakdown the Problem Analyze the Problem Peer Review Think-pair-share Mind Map Guided Library References | E-material Interactive PPT You Tube Videos Google Classroom | Presentation Step-by-step Solutions Peer Grading Exit Ticket CIA II | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development Activities (SD): Quiz, MCQ, Slip Test, Problem Solving, Proof Narrating, Presentation, Relay Race Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Activities related to Cross Cutting Issues: - Assignment: Evaluation of Definite Integrals (Last date to submit – 08-09-2025) Seminar Topics: Partial Fraction, Infinite Products, Canonical Products, Jensen's Formula, Hadamard's Theorem #### Sample questions #### Part A (1 mark) - 1. The winding number of a point inside the circle is (K3-Ap, CO-1) - (i) 1 - (ii) 0 - (iii) ∞ - (iv) None of these - 2. If f(z) is analytic and non-constant in a region Ω , then which value of f(z) has no maximum in Ω ? (K4-An, CO-2) - 3. If f(z) is analytic in a region Ω , then for which type of cycle $\int_{V} f(z)dz = 0$. (K3-Ap, CO-3) - 4. True or False: Taylor's Series is valid in throughout the complex plane. (K3-Ap, CO-4) - 5. Write the two standard representation of rational function. (K4-An, CO-5) #### Part B (6 marks) - 1. (i). If γ lies inside a circle, then prove that $n(\gamma, a) = 0$ for all points a outside the circle - (ii). If a is a point inside the circle C, then prove that $n(\gamma, a) = 1$. (K2-U, CO-1) - 2. Verify the Statement. A function which is analytic and bounded in the whole plan must reduce to a constant. (K4-An, CO-2) - 3. Evaluate $\int_0^{2\pi} \frac{1}{a + \cos\theta} d\theta$, a > 1. (K5-E, CO-3) - 4. Show that the function $P_U(z)$ is harmonic for |z| < 1 and $\lim_{z \to e^{i\theta_0}} P_U(z) = U(\theta_0)$ provided that U is continuous at θ_0 . (K3-Ap, CO-4) - 5. Show that $sin\pi z$ is an entire function of genus 1. (K4-An, CO-5) ## Part C (12 marks) - 1. Let f(z) be analytic in an open disk Δ and γ be a closed curve in Δ . Then prove that for any point a not on γ , $n(\gamma, a)$. $f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z-a} dz$, where $n(\gamma, a)$ is the index of a with respect to γ . Also derive the Cauchy's Integral Formula.
(K3-Ap, CO-1) - 2. Show that a region Ω is simply connected if and only if $n(\gamma, a) = 0$ for all cycles γ in Ω and all points a which do not belong to Ω . (K4-An, CO-2) - 3. Evaluate $\int_0^{\pi} \log \sin x \ dx$. (K5-E, CO-3) - 4. If f(z) is analytic in the region Ω , containing z_0 , then show that the following representation is valid in the largest open disk of centre z_0 contained in Ω . $$f(z) = f(z_0) + \frac{f'(z_0)}{1!}(z - z_0) + \dots + \frac{f^n(z_0)}{n!}(z - z_0)^n + \dots$$ (K3-Ap, CO-4) 5. Suppose f(z) is holomorphic function with f(0) is non-zero and f(z) has zero at $a_1, a_2, ..., a_n$ inside $|z| < \rho$. Then prove that $\log |f(0)| = -\sum_{k=1}^n \log \left(\frac{\rho}{|a_k|}\right) + \frac{1}{2\pi} \int_0^{2\pi} \log |f(\rho e^{i\theta})| \, d\theta$. (**K4-An, CO-5**) Head of the Department [Dr. M. K. Angel Jebitha] Course Instructor [Dr. A. Anat Jaslin Jini] Class : II M.Sc Title of the Course : Core Course VIII : Topology Semester : III Course Code : MP233CC2 | Course | L | Т | P | Credits | Inst. Hours | Total Hours | Marks | | | | |----------|---|---|---|---------|-------------|-------------|-------|----------|-------|--| | Code | | - | | | inst ilouis | | CIA | External | Total | | | MP233CC2 | 6 | - | - | 5 | 6 | 90 | 25 | 75 | 100 | | # **Learning Objectives** 1. To distinguish spaces by means of simple topological invariants. 2. To lay the foundation for higher studies in Geometry and Algebraic Topology ### **Course outcomes** | CO | Upon completion of this course, the students will be able to: | Cognitive level | |--------|--|-----------------| | CO - 1 | recall the definitions of topological space, basis, various topologies, closed sets, limit points, continuity, connectedness, compactness, separation axioms, countability axioms and completeness | K1 | | CO - 2 | defends the basic results in topological spaces, continuous functions, connectedness, compactness, countability and separation axioms and complete metric spaces | K2 | | CO - 3 | solve problems on topological spaces, continuous functions and topological properties | K3 | | CO - 4 | analyse various facts related to continuous functions, connected spaces, compact spaces, countable spaces, separable spaces, normal space and compact spaces | K4 | | CO - 5 | evaluate the comparison between different types of topological spaces | K5 | K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5- Evaluate # Total contact hours: 90 (Including instruction hours, assignments and tests) | Unit | Module | Topic | Teaching
Hours | Hours | Cognitive level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/
Evaluation | |------|--------|--|-------------------|-----------|-----------------|----------------------------|--|---|---| | I | TOPOLO | OGICAL SPACE AN | D CONTI | NUOUS FUN | CTIONS | | | | | | | 1. | Definition of topology, discrete and indiscrete topology, finite complement topology, Basis for a topology and examples, Comparison of standard and lower limit topologies | 4 | 1 | K2 | Collaborative learning | Participative
Learning | YouTube
Videos | Short
summary,
MCQ, Oral
Questions,
CIA I | | | 2. | Order topology: Definition & Examples, Product topology on XxY: Definition & Theorem | 4 | 1 | К3 | Lecture | Participative Learning: Group Discussion | Presentation
, E-notes,
Video
materials | Recalling,
Quiz, Concept
test, CIA I | | | 3. | The Subspace Topology: Definition & Examples, Theorems | 4 | 1 | K2 | Lecture with Illustrations | | Power Point
Presentation
, E-notes,
Video
materials | Slip Test,
Questioning,
CIA I | | | 4. | Closed sets: Definition & Examples, Theorems, Limit points: Definition Examples & Theorems , Hausdorff Spaces: Definition & Theorems | 4 | | K1, K2 | Inductive
Method, | Brainstorming,
Group
Discussion | Power Point
Presentation
, E-notes,
Video
materials | Concept
mapping,
Concept
explanation,
CIA I | |----|----|--|----------|------------|--------|--|---------------------------------------|---|---| | | 5. | Continuity of a function: Definition, Examples, Theorems, Homeomorphism: Definition & Examples, Rules for constructing continuous function, Pasting lemma & Examples, Maps into products | 4 | 1 | K1 | Heuristic Method, Illustrative method, Analytic Method, Inductive Method | Concept
Mapping,
Brainstorming | YouTube
Videos | MCQ, Oral
Questions,
CIA I | | II | | ODUCT TOPOLOG | Y, THE M | ETRIC TOPO | | 1 | | | | | | 1. | The Product Topology: Definitions, Comparison of box | 3 | 1 | K4 | Flipped
Classroom,
Collaborative
learning, | Inquiry Based Learning, Concept | YouTube
Videos | Slip Test ,
Group quiz,
Assignment,
CIA I | | | and product topologies, Theorems related to product topologies, Continuous functions and examples | | | | Inquiry-Based
Learning, | Mapping,
Brainstorming | | | |----|---|---|---|--------|--|--|---|--| | 2. | The Metric Topology: Definitions and Examples, Theorems, Continuity of a function, The sequence lemma, Constructing continuous fuctions, Uniform limit theorem, Examples and Theorems | 4 | 1 | K2, K3 | Analytic Method, Collaborative learning, Inquiry-Based Learning, Illustrative method | Brainstorming,
Group
Discussion | Power Point
Presentation
, E-notes,
Video
Materials | Think-Pair-Share, CIA I | | 3. | Connected Spaces: Definitions, Examples, Lemmas and Theorems | 3 | | K1, K3 | Collaborative learning, Inquiry-Based Learning, Illustrative method, Flipped Classroom | Participative Learning: Visual exploration, Group quiz | Power Point
Presentation
, E-notes,
Video
Materials | Recalling
Steps,
Concept
mapping, CIA | | | 4. | Components and Local Connectedness: Definitions, Path components, Locally connected, Locally path connected: Definitions and Theorems | 4 | 1 | K3, K4 | Lecture with
discussion,
Deductive
Method,
Group
Discussion | Think-Pair-
Share,
Brainstorming,
Group
Discussion | YouTube
Videos | MCQ, Oral
Questions,
CIA I | |-----|-------|--|---|---|---------|--|--|---|----------------------------------| | | 5. | The Product Topology: Definitions, Comparison of box and product topologies, Theorems related to product topologies, Continuous functions and examples | 4 | 1 | K3, K4 | Inquiry-Based
Approach,
Flipped
Classroom | Participative
Learning,
Concept
Mapping,
Brainstorming | YouTube
Videos | Oral presentation, CIA I | | III | COMPA | CTNESS | | | | | | | | | | 1. | Compact space: Definition, Examples, Lemma, Theorems and Image of a | 4 | 1 | K1 & K2 | Contextual Based Learning, Deductive Method | Inquiry Based Learning Concept Mapping, Brainstorming | Power Point
Presentation
, E-notes,
Video
Materials | Quiz, CIA I | | | compact space, Product of finitely many compact spaces, Tube lemma, Finite intersection property: Definition & Theorem | | | | | | | | |----|--|---|---|---------|---|--|---|---| | 2. | Compact Subspaces of the Real Line: Theorem, Characterize compact subspaces of R ⁿ , Extreme value theorem, The Lebesgue number lemma, Uniform continuity theorem | 4 | 1 | K3 & K4 | Brainstorming
, Group
Discussion,
Flipped
Classroom | Participative Learning, Concept Mapping, Brainstorming | Power Point
Presentation
, E-notes,
Video
Materials | Think-Pair-
Share, CIA II | | 3. | Limit Point Compactness: Definitions, Examples and Theorems, Sequentially compact | 3 | 1 | K1 & K3 | Blended
Learning,
Collaborative
learning,
Inquiry-Based
Learning | Concept
Mapping, Peer
Teaching | YouTube
Videos | Home
assignment,
Worksheets,
Assignment,
CIA II | | 4. | Local compactness: | 3 | | K1 & K2 | Collaborative learning, | Participative
Learning, | YouTube
Videos | Collaborative worksheet, | | | | Definition & | | | | Brainstorming | Concept | | Peer-assessed | |----|--------|---|---|---|----|--|--|---|-----------------------------------| | | | Examples, | | | | , Group | Mapping, | | worksheet, | | | | Theorems | | | | Discussion | Brainstorming | | CIA II | | IV | SEPARA | ATION AXIOMS | | | • | | | | | | | 1. | First Countability axiom, Second Countability | 3 | 1 | K3 | Lecture with Illustration Problem- | Participative Learning, Concept | Power Point
Presentation
, E-notes, | Seminar, CIA
II | | | | axiom: Definitions, Theorems, Dense | | | | solving, Analytic Method, | Mapping | Video
Materials | | | | | subset: Definitions
& Theorem,
Examples,
Lindelof space :
Definition,
Examples | | | | Inductive
Method | | | | | | 2. | The Separation Axioms: Regular space & Normal space: Definitions, Lemma, Relation between the separation axioms, Examples based on separation axioms, Theorem based on separation axioms and Metrizable space | 3 | | K3 | Lecture method, Deductive Method, Group Discussion | Inquiry Based
Learning,
Concept
Mapping,
Brainstorming | Power Point
Presentation
, E-notes,
Video
Materials | Concept
Explanation,
CIA II | | | 3. | Normal Spaces: | 3 |] 1 | K1 & K2 | Collaborative | Participative | Power Point | Slip Test, | |---|-------|------------------|---------|-------------|----------|---------------|---------------|--------------|---------------| | | | Theorems and | | | | Learning, | Learning, | Presentation | Concept | | | | Examples | | | | Flipped | Concept | , E-notes, | explanations, | | | | | | | | Classroom | Mapping, | Video | Oral | | | | | | | | | Brainstorming | Materials | presentation, | | | | | | | | | | | CIA II | | | 4. | Urysohn lemma | 2 | | K2 | Lecture | Inquiry Based | Power Point | Oral | | | | | | | | method, | Learning, | Presentation | presentation, | | | | | | | | Heuristic | Concept | , E-notes, | Questioning, | | | | | | | | Method, | Mapping, | Video | CIA II | | | | | | | | Brainstorming | Brainstorming | Materials | | | V | URYSO | HN METRIZATION | NTHEORE | M, TIETZE E | XTENSION | THEOREM & | COMPLETE MI | ETRIC SPACI | Ε | | | 1. | Urysohn | 3 | 1 | K2 | Inquiry-Based | Inquiry Based | Power Point | Oral | | | | metrization | | | | Learning, | Learning, | Presentation | presentation, | | | | theorem, | | | | Illustrative | Concept | , E-notes, | Short test, | | | | Imbedding | | | | method, | Mapping, | Video | CIA II | | | | theorem | | | | Flipped | Brainstorming | Materials | | | | | | | | | Classroom | | | | | | 2. | Tietze extension | 3 | | K2 | Collaborative | Participative | Power Point | Concept | | | | theorem | | | | learning, | Learning, | Presentation | explanations, | | | | | | | | Inquiry-Based | Concept | , E-notes, | Oral | | | | | | | | Learning, | Mapping, | Video | presentation, | | | | | | | | | Brainstorming | Materials | CIA II | | | 3. | Complete Metric | 3 | 1 | K3 & K4 | Lecture | Participative | Power Point | Seminar, | | | | Spaces: | | | | method, | Learning, | Presentation | Concept | | | | Definitions, | | | | Heuristic | Group | , E-notes, | explanations, | | | | Examples and | | | | Method, | discussion, | Video | CIA II | | | | Theorems, | | | | Deductive | Brainstorming | Materials | | | | | Isometric | | | | Method | | | | | | | embedding | | | | | | | | | 4. | Compactness in | 3 | K3 & K4 | Collaborative | Inquiry Based | Power Point | Quiz, CIA II | |----|------------------|---|---------|---------------|---------------|--------------|--------------| | | Metric spaces: | | | learning, | Learning, | Presentation | | | | Totally bounded, | | | Brainstorming | Concept | , E-notes, | | | | Pointwise | | | , Group | Mapping, | Video | | | | bounded, | | | Discussion | Brainstorming | Materials | | | | Equicontinuous, | | | | | | | | | Definitions, | | | | | | | | | Lemmas, | | | | | | | | | Theorems | | | | | | | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development Activities (Em/En/SD): Poster Presentation, Seminar Presentation, Group Discussion Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Activities related to Cross Cutting Issues: - Assignment: Prove given results (Exercise problems in the text book) (Last date for Submission : 25.08.2025) Seminar Topic: Closed Sets, Limit Points, Continuity of a Functions, Connected Space and Dense Sets ## Sample questions Part A (1 Mark) - 1. Which pair of topologies are not comparable? (K4-An, CO-4) - (i) \mathbb{R}_l and \mathbb{R} - (ii) \mathbb{R}_k and \mathbb{R} - (iii) \mathbb{R}_l and \mathbb{R}_k - (iv) None of the above - 2. Let $f: A \to \prod_{\alpha \in J} X_{\alpha}$ be given by the equation $f(\alpha) = (f_{\alpha}(\alpha))_{\alpha \in J}$, where $f_{\alpha}: A \to X_{\alpha}$ for each α . If $\prod X_{\alpha}$ has the product topology, then f is continuous iff (K3-Ap, CO-3) - (i) At least one f_{α} is continuous (ii) At most one f_{α} is continuous (ii) Each f_{α} is continuous (iv) None of the above - 3. Under which mapping the image of compact space is compact (K4-An, CO-4) (i) Bijective mapping (ii) Injective mapping - (iii) Continuous mapping - (iv) Uniform continuous mapping - 4. A space for which every open covering contains a countable subcovering is called a . (K2-U, CO-4) - 5. Say True or False: The Tietze extension theorem implies the Uryshon lemma. (K1-R, CO-1) #### Part B (6 Marks) - 1. Define order topology and give two examples for the same. (K2-U, CO-4) - 2. Let X be a metric space with metric d. Then prove that $\bar{d}: X \times X \to \mathbb{R}$ by $\bar{d}(x,y) = \min\{d(x,y), 1\}$ is a metric that induces the same topology as d. (K3-Ap, CO-3) - 3. Show that compactness implies limit point compactness. (K4-An, CO-4) - 4. Prove that every metrizable space is normal. (K2-U, CO-4) - 5. A metric space is complete iff every Cauchy's sequences has a convergent subsequences. (K4-An, CO-4) ## Part C (12 Marks) - 1. Let X be an ordered set in the order topology and Y be a subset of X that is convex in X. Then show that the order topology on Y is the same as the topology Y inherits as a subspace of X. (K3-Ap, CO-3) - 2. Prove that the topologies on \mathbb{R}^n induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^n . (K2-U, CO-4) - 3. State and prove the Lebesgue number lemma. (K2-U, CO-4) - 4. Prove that a subspace of a Hausdorff space is Hausdorff and a product of Hausdorff spaces is Hausdorff. (K3-Ap, CO-3) - 5. State and prove Urysohn meterisation theorem. (K2-U, CO-4) Head of the Department Dr. M. K. Angel Jebitha Course Instructor Dr.J.Befija Minnie Class : II M.Sc. Mathematics **Title of the Course : Core Course IX: Traditional Mechanics** Semester : III Course Code : MP233CC3 | Course Code | I. | Т | P | S | Credits | Inst. Hours | Total Hours | Marks | | | | |-------------|----|---|---|---|---------|-------------|-------------|-------|----------|-------|--| | Course Coue | L | | | | | inst. Hours | Total Hours | CIA | External | Total | | | MP233CC3 | 6 | - | - | - | 5 | 6 | 90 | 25 | 75 | 100 | | # **Learning Objectives:** 1. To gain deep insight into concepts of Mechanics 2. To do significant contemporary research. ## **Course Outcomes** | COs | Upon completion of this course, the students will be able to: | Cognitive Level | |--------|---|---------------------------------| | CO - 1 | grasp concepts like time dilation, relativistic dynamics, and the equivalence principle. | K_4, K_5 | | CO - 2 | understand classical mechanics principles, such as coordinates, constraints, and energy-momentum relationships, to analyse mechanical systems. | K_1, K_2 | | CO - 3 | apply Lagrangian methods to special cases such as impulsive motion and systems with constraints, thereby expanding their problem-solving abilities. | K ₃ | | CO - 4 | Integrate classical and relativistic mechanics, enabling them to analyze systems ranging from everyday mechanics to those involving high speeds and gravitational forces. | K ₃ , K ₅ | | CO - 5 | become proficient in using Lagrangian mechanics to solve complex problems and identify integral properties of motion. | K ₂ , K ₃ | # Total contact hours: 90 (Including instruction hours, assignments, and tests) | Unit | Module | Topic | Teaching
Hours | Cognitive level | Pedagogy | Student-Centric
Method | E-
Resources | Assessment/
Evaluation
Methods | |------|--------|---|-------------------|------------------|---|-------------------------------------|---|--------------------------------------| | | THE MI | ECHANICAL SYSTEM | Ī | | | | | | | I | 1 | The Mechanical
System | 3 | K1(R),
K2 (U) | Recall the basic definitions, Discussions | Discussions, Brainstorming | E-Note | Questioning | | | 2 | Generalized coordinates, Constraints | 4 | K4(An),
K5(E) | Transmissive
method with
illustration, Team
work | Think -Pair-
Share, Discussions | PPT,
YouTube-
Types of
constraints | Summarize the concepts | | | 3 | Virtual work and D'Alembert's Principle | 4 | K2(U),
K5(E) |
Illustrative
Method, Team
work | Defining problems, Group discussion | E-Note | Questioning | | | 4 | Energy and Momentum | 4 | K2(U),
K5(E) | Transmissive method | Discussions, Debates | E-Book,
You Tube-
Generalized
Momentum | Assignment | | | LAGRA | NGE'S EQUATIONS | | | | | | | | II | 1 | Derivation of Lagrange's equations | 5 | K1(R) | Brainstorming | Problem solving, Think -Pair- Share | PPT | Slip Test | | | 2 | Problems using
Lagrange's equation | 5 | K2(U) | Transmissive method, Discussion | Discussions, Debates | E-Note, You tube-
Examples of LE | Collecting
MCQ | | | | Integrals of the | | | Think-Pair-Share, | Discussions, | E-Note | Quiz | |-----|---|--|--------|---|--------------------------------------|--|--|-------------------| | | 3 | motion. | 5 | K2(U) | Flipped | Brainstorming, | | | | | | | | | Classroom | | | | | | SPECIA | L APPLICATIONS OF | LAGRAN | GE'S EQUA | ATIONS | | | | | III | | Special Applications | | | Transmissive | Problem solving, | E-Book, | Slip Test | | | 1 | of Lagrange's Equations, Rayleigh's Dissipation Function | 4 | K2(U) | method, Group
Discussion | Think -Pair- Share | YouTube | | | | 2 | Impulsive Motion, Impulsive, and Momentum | | K3(Ap),
K4(An) | Illustrative
Method, Team
Work | Discussions, Debates | E-Note | Questioning | | | 3 | Lagrangian method,
Ordinary constraints,
Impulsive constraints | 4 | K3(Ap),
K4(An) | Problem Solving,
Team work | Defining problems, Group discussion, | E-Note, You tube-
Impulsive constraints | Collecting
MCQ | | | 4 | Energy considerations- Quasi–coordinates. Examples 4 | | K2(U),
K5(E) | Transmissive method | Problem solving,
Think -Pair- Share | E-Book | CIA-I, Quiz | | | INTRO | DUCTION TO RELATI | VITY | | | | | | | IV | 1 | Introduction to Relativity, Introduction, Galilean transformation | | K1(R),
K2(U) | Illustrative
Method, Team
work | Group Discussions, Think -Pair- Share | E-Book,
PPT | Slip Test | | | Maxwell's equations, The ether theory, The principle of relativity, Relativistic Kinematics K3(Ap) | | K3(Ap) | Illustrative
Method, Group
Discussion | Defining problems, Group discussion | E-Book,
PPT | MCQ | | | | 3 | The Lorentz transformation equations, Events and simultaneity, Einstein's train, Time dilation | 4 | K2(U) | Illustrative
Method | Defining problems, Group discussion | E-Book,
PPT | Quiz,
Collecting
MCQ | |---|-------|---|---|-------------------|---|--|---|----------------------------| | | 4 | Longitudinal contraction, the invariant interval, proper time, and proper distance | 3 | K3(Ap),
K4(An) | Transmissive
Method, Team
work | Presentation, Think-Pair-Share | E-Book,
PPT | Questioning | | | 5 | The world line, the twin paradox, the Addition of velocities, the relativistic Doppler effect | 3 | K2(U),
K4(An) | Transmissive
Method,
Discussion | Real -world problems, Discussions | E-Book, PPT, You tube-The relativistic Doppler effect | Slip Test | | | RELAT | TIVISTIC DYNAMICS | | | | | | | | V | 1 | Relativistic Dynamics, Momentum, Energy | 4 | K2(U) | Transmissive
Method,
Presentation | Defining problems, Group discussion | E-Book,
PPT | Questioning | | | 2 | The momentum, energy four vector, Force, Conservation of energy, Mass and energy, inelastic collision | 4 | K3(Ap),
K4(An) | Illustrative
Method, | Presentation, Think-Pair-Share | E-Book,
PPT | MCQ, Quiz | | | 3 | The principle of equivalence, Lagrangian and | 4 | K2(U),
K3(Ap) | | Real -world
problems, Group
Discussion | E-Book,
PPT, You
tube- | CIA- II,
Quiz | | | Hamiltonian | | | Illustrative | | Accelerated | | |---|----------------------|---|-------|------------------|-------------------|-------------|--------------| | | formulations, | | | Method, | | systems | | | | Accelerated systems | | | Presentation | | | | | | | | | | Peer Instruction, | E-Book, | | | | Rocket with constant | | | Transmissive | Group Discussions | PPT | Questioning, | | 4 | acceleration, Rocket | 3 | K2(U) | Method, | | | Slip Test | | | with constant thrust | | | Presentation, | | | | | | | | | Think-Pair-Share | | | | Course Focusing on Employability/ Entrepreneurship/ Skill Development: Skill Development Activities (SD): Problem-solving, Seminar Presentation, Group Discussion Course Focussing on Cross-Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Activities related to Cross-Cutting Issues: - **Assignment: Solving Exercise Problems** Seminar Topic: The principle of equivalence, Lagrangian and Hamiltonian formulations, Accelerated systems, Rocket with constant acceleration, Rocket with constant thrust. # Sample questions Part A (1 Mark) - 1. The types of constraints are ----- - 2. The generalized coordinates are ------ - 3. The derivation of Lagrange's equations for a holonomic system required that the generalized coordinates be ------ - a) Dependent - b) independent - c) derivable - d) both(a), (c) - 4. The change in the total linear momentum of a system during a given time interval is equal to the total impulse of the external forces acting over the same interval. - a) True b) False - 5. The equivalence of mass and energy also applies to particles such as photons which have a ----- rest mass. - a) unity b) zero c) empty d) reversal force #### Part B (6 Marks) - 1. Write about D'Alembert's principle. - 2. A particle of mass m is connected by a massless spring stiffness k and unstressed length r_0 to a point p which is moving along a circular path of radius a at a uniform angle rate ω . Assuming that the particle moves without friction on a horizontal plane, find the differential equation motion. - 3. Explain workless constraints with examples. - 4. Derive the Lagrange's equation for non-holonomic constraints. - 5. Derive the relative Doppler effect. ## Part C (12 Marks) 1. A rigid bar can rotate freely about a fixed pivot o and has a moment of inertia I about this point. a particle of mass m strikes the bar inelastically at time t_1 and slides along the bar after the impact. Solve for the velocities x, y, θ after impact, if the initial conditions are $$x(t_1) = 1m \qquad y(t_1) = 1m \qquad \theta(t_1) = \frac{\pi}{4} ; \qquad \qquad x(t_1 - t_1) = 1m / \sec \qquad \theta(t_1 - t_2) \theta$$ Let m=1Kg and I=10Kgm² 2. Derive Lagrange's equation of motion for a holonomic system. - 3. Derive the equation of motion for small oscillation. - 4. A double pendulum consists of two particles suspended by massless rods. Find the differential equations of motion assuming that all motion takes place in a vertical plane. Linearize these equations, assuming small motions. - 5. Derive Maxwell's Equation. **Head of the Department** **Course Instructor** Dr. M. K Angel Jebitha Mrs. J C Mahizha **Department** : Mathematics Class : II M. Sc Mathematics Title of the Course: ELECTIVE COURSE V: INTRODUCTION TO MACHINE LEARNING USING PYTHON Semester : III Course Code : MP233EC2 | Course Code | L | T | P | S | Credits | Inst. Hours | Total Hours | | Marks | | |--------------------|---|---|---|---|---------|-------------|--------------------|-----|----------|-------| | | | | | | | | | CIA | External | Total | | MP233EC2 | 4 | - | - | - | 3 | 4 | 60 | 25 | 75 | 100 | ### **Learning Objectives:** 1. To learn machine learning and the usage of Python for data analysis. 2. To explore probability theory and data visualization techniques using Python. ### **Course Outcomes** | CO | On the successful completion of the course, students will be able to: | Cognitive level | |-----|--|-----------------| | CO1 | gain a solid understanding of probability theory, including random experiments and the binomial distribution. | K1, K2 | | CO2 | understand the importance of machine learning and its application in analytics | К2 | | CO3 | declare variables, use conditional statements, generate sequence numbers, implement control flow statements, and define functions. | К3 | | 4 | acquire knowledge of statistical concepts such as the normal distribution, and other important probability distributions, enabling them to analyze data effectively using Python | K4 | |---|--|----| | 5 | possess skills in data exploration and visualization, capable of drawing various plots including bar charts and comparing distributions. | K5 | K1 - Remember; K2 - Understand; K3- Apply; K4 - Analyse; K5- Evaluate # **Total Contact hours: 60 (Including lectures, assignments and tests)** | Unit | Module | Topic | Teaching
Hours | Assessment
Hours | Cognitive level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/ Evaluation Methods | |------|--------|--|-------------------|---------------------|-----------------|--|--|--|---| | I | INTROD | UCTION TO MAC | CHINE LEA | RNING | | | | | | | | 1 |
Introduction to Analytics and Machine Learning | 3 | 1 | K1(R) | Lecture Method Interactive Method Socratic Method | Think-Pair-
Share,
Inquiry-Based
Learning | E-material Interactive PPT Video Lectures LMS | Oral Quiz Exit Ticket One-Sentence Summary Concept Questions, CIA I | | | 2 | Why Machine
Learning? | 1 | | K3(Ap) | Inquiry-
Based
Learning
Interactive
Method | Think-Aloud
Visual
Diagrams
Quick Fire
Questions | E-material
Interactive
PPT
Video Lectures | Conceptual
Quiz, Group
Presentation,
CIA I | | | 3 | Framework for
Developing
Machine
Learning Models | 2 | 1 | K1(R) | Analytical
Method
Illustrative
Method | Collaborative
Learning,
Concept
Mapping | - | Concept
Explanation
MCQ
CIA I. | |----|--------|---|-----|---|-------|---|---|---|---| | | 4 | Why Python? | 1 | | K2(U) | Computation
al Thinking
Collaborative
Learning | Think-Aloud
Inquiry-Based
Learning
Peer Teaching | Video Lecture,
Interactive
Notes | Class Test
Homework
CIA I. | | | 5 | Python Stack for
Data Science | 2 | 1 | K5(E) | Problem- Based Learning Heuristic Method Collaborative Learning Algorithmic Approach | Lateral Thinking Break Down Problems Peer Discussion Error Analysis Real-World Applications | Online
Tutorials and
Notes: | Problem-
Solving
Assignments,
Open Book
Exam
Questions,
CIA I | | II | INTROD | UCTION TO PYT | HON | | | | | 1 | | | | 1 | Declaring
Variables | 1 | 1 | K1(R) | Blended
Learning | Peer
Instruction,
Blended
Learning, | YouTube
Lectures,
Interactive
PPT | Concept
Relay
Exit Ticket
Quizizz Game
CIA I | | | 2 | Conditional
Statements | 2 | | K1(R) | Inquiry-
Based
Collaborative
Learning | Peer
Discussion
Questions | Video Lectures
LMS
Google class
room | Surprise Test CIA I | | | 3 | Generating
Sequence
Numbers | 1 | 1 | K2(U) | Lecture with
Illustration
Interactive
Method | Peer Teaching | Interactive
PPT
LMS | Assignments,
Questions,
CIA I | |-----|--------|-----------------------------------|-----------|------------|--------|---|---|---|---| | | 4 | Control Flow
Statements | 2 | | K2(U) | Inquiry-
Based
Collaborative
Learning | Peer Teaching | Interactive
PPT
Slido | Slip Test
Homework
CIA I | | | 5 | Functions | 3 | | K3(Ap) | Based
Learning
Algorithmic
Approach | Jigsaw
Method
Peer
Discussion | E-material Interactive PPT Google Class Room | Slip Test
Homework
Surprise Test
CIA I | | III | EXPLOR | RATION OF DATA | USING VIS | SUALIZATIO | N | | | | | | | 1 | Drawing Plots | 1 | 1 | K1(R) | Mathematical
Derivations,
Concept
Mapping | Flipped
Classroom,
Peer Teaching | Video Lectures | Assessment,
Conceptual
MCQs
One-minute
paper
CIA I | | | 2 | Bar Chart
Histogram | 2 | | K2(U) | Application-
Based
Teaching | Socratic
Questioning
Peer
Discussion | Video Lectures
LMS
Google class
room | Concept
Relay
Exit Ticket
Quizizz Game
CIA I | | | 3 | Distribution or
Density Plot | 2 | 1 | K3(Ap) | Concept
Building,
Mathematical
Insights | Peer
Instruction | Interactive
PPT
LMS | Surprise Test CIA I | | | 4 | Box Plot | 2 | | K3(Ap) | Lecture with Illustration Interactive Method | Peer
Discussion
Questions | Interactive
PPT
Slido | Assignments,
Questions,
CIA I | |----|--------|--------------------------|---|---|--------|---|--|---|---| | | 5 | Comparing Distributions. | 2 | 1 | K4(An) | Blended
Learning | Jigsaw
Method
Peer Teaching | E-material Interactive PPT Google Class Room | Slip Test
Homework
CIA I | | IV | PROBAE | BILITY THEORY | 1 | | • | | | | | | | 1 | Introduction | 1 | 1 | K5 (E) | Inquiry-
Based
Learning | Think-Pair-
Share,
Inquiry-Based
Learning | YouTube
Lectures,
Interactive
PPT | Assignment,
CIA II | | | 2 | Random
Experiment | 2 | | | Lecture with Illustration Interactive Method Blended Learning | Think-Aloud
Visual
Diagrams
Quick Fire
Questions | Video Lectures
LMS
Google class
room | Visualization Task, Conceptual Quiz, Group Presentation, CIA II | | | 3 | Sample Space
Event | 2 | | K5(E) | Inquiry-
Based
Learning | Collaborative
Learning,
Visual
Diagrams | Interactive
PPT
LMS | Concept
Explanation
MCQ
CIA II. | | | 4 | Random
Variables | 2 | 1 | K5(E) | Interactive
Method
Blended
Learning | Think-Aloud
Inquiry-Based
Learning | Interactive
PPT
Slido | Class Test
Homework
CIA II | | | 5 | Binomial
Distribution | 2 | 1 | K5(E) | Application-
Oriented
Learning,
Visual /
Graphical
Pedagogy | Lateral
Thinking
Break Down
Problems | E-material
Interactive
PPT
Google Class
Room | Problem-
Solving
Assignments,
Open Book
Exam
Questions,
CIA II | |---|-------|---|---|---|--------|--|---|--|--| | V | NORMA | L DISTRIBUTION | | | | | | | | | | 1 | Example of
Normal
Distribution | 2 | 1 | K3(Ap) | Core
Conceptual
Approach | Think-Aloud Visual Diagrams Quick Fire Questions | .E-material
Interactive
PPT Video
Lectures LMS | Oral Quiz
Questions
CIA I | | | 2 | Mean and
Variance | 1 | 1 | K3(Ap) | Visual
Pedagogy | Think-Aloud
Inquiry-Based
Learning
Peer Teaching | E-material
Interactive
PPT
Video Lectures | Quiz
CIA II | | | 3 | Confidence
Interval | 2 | | K5(E) | Integrated
Interdisciplin
ary Learning | Flipped Class
room
Visual
Diagrams
Questions | PowerPoint with graphical representations | Concept
Explanation
MCQ
CIA II | | | 4 | Cumulative
Probability
Distribution | 2 | 1 | K4(An) | Problem-
Based
Learning | Collaborative
Learning,
Visual
Diagrams | Video Lecture,
E-Notes | Class Test
Homework
CIA II | | | 5 | Other Important
Distributions | 2 | | K2(U) | Interactive
Method | Peer
Instruction, | Online Tutorials and E-Notes: | Assignments,
Open Book
CIA II | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability and Skill Development Activities (Em / En /SD): Hands on Training on Graphical Representation Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Environment Sustainability activities related to Cross Cutting Issues:- Assignment: **Preparing Notes for Introduction to Python** (Last date to submit: 01-08-2025) Seminar: Exploration of Data Using Visualization #### Sample questions #### Part A (1 mark) - 1. Which of the following is the first step in developing a machine learning model? (CO2, K2) - (a) Data entry - (b) Data Collection - (c) Data modification - (d) Data Analysis (d) Func(): - 2. Which of the following is the correct way to define a function in Python? (CO3, K3) - (a) def myFunc(): - (b) def Func(): - (c) myFunc(): - 3. What does the height of a bar in a bar chart indicate? (CO5, K1) - 4. Which distribution is suitable for binary outcomes in trials? (CO1, K2) - 5. What does the area under the normal curve represent? (CO4, K4) #### Part B (6 marks) - 1. Discuss the steps in developing a Machine Learning model. (CO2, K2) - 2. Write Python code to generate a sequence of numbers using range() and explain its output. (CO3, K3) - 3. Explain how bar charts and histograms differ, with examples. (CO5, K4) - 4. Explain the concept of binomial distribution with a real-life example. (CO1, K2) - 5. Describe the properties of the normal distribution. (CO4, K4) ## Part C (12 marks) - 1. Describe in detail the steps involved in developing a Machine Learning model using Python. (CO2, K2) - 2. Write a Python program using control flow statements and functions to display the Fibonacci sequence. Explain the logic used. (CO3, K3) - 3. Illustrate and explain five different data visualization techniques using Python. (CO5, K4) - 4. Explain binomial distribution in detail. Derive its formula and solve two numerical problems. (CO1, K2) - 5. Describe normal distribution and explain how to compute confidence intervals using Z-scores with examples. (CO4, K4) Head of the Department Dr. M. K. Angel Jebitha Course Instructor Dr. M. K. Angel Jebitha **Department** : Mathematics Class : II M.Sc Title of the Course : Skill Enhancement Course II: Research Methodology Semester : III Course Code : MP233SE1 | Course Code | L | Т | Р | S | Credits | Inst. Total Marks | | | | | |-------------|---|---|---|---|---------------|-------------------|-------|-----|----------|-------| | | | | _ | | 2 - 3 - 3 - 3 | Hours | Hours | CIA | External | Total | | MP233SE1 | 3 | - | - | - | 2 | 3 | 45 | 25 | 75 | 100 | ## **Learning Objectives** - 1. To write a scientific
research manuscript containing important key sections - 2. To realize the importance of Research Ethics and methodologies involved in the research process #### **Course Outcomes** | CO | On the successful completion of the course, students will be able to: | Cognitive level | |-----|--|-----------------| | CO1 | understand the objectives and methods of research, standard structure of | K2 | | | a scientific paper and avoid plagiarism. | | | CO2 | analyzing research data and statistical measures such as measures of | K4 | | | central tendency, dispersion, and asymmetry. | | | CO3 | identify the ethics of scientific paper writing and analyze research | K4 | | | problems | | | CO4 | develop research designs for specific research problems and assess the | K5 | | | significance of research in various fields. | | | CO5 | create structured scientific research papers and write project proposals | K6 | | | and progress reports for research funding. | | K1 - Remember; K2 - Understand; K3- Apply; K4 - Analyse; K5- Evaluate # **Total contact hours: 45 (Including instruction hours, assignments and tests)** | Unit | Module | Торіс | Teaching
Hours | Assignment
Hours | Cognitive level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/ Evaluation Methods | |------|--------|--|-------------------|---------------------|-----------------|---------------------|--------------------------------|----------------------------------|--| | I | RESEAI | RCH METHODOLO | OGY | | | | | | | | | 1. | Research Methodology: An Introduction, Meaning of Research, Objectives of Research - | 1 | 1 | K2 | Brainstorming | Think Pair
Share | Interactive
PPT | Conceptual Quiz,
Group Presentation,
CIA I | | | 2. | Motivation in
Research - Types
of Research | 1 | | K2 | Lecture | Group
Discussion | Online
Tutorials and
Notes | Slip Test, CIA I | | | 3. | Research Approaches - Significance of Research | 1 | 1 | K2 | Analytic
Method | Concept
Mapping | PowerPoint
Presentation | Questioning, CIA I | | | 4. | Research Methods
versus
Methodology -
Research and
Scientific Method
 | 1 | | K4 | Heuristic
Method | Concept
based
discussion | YouTube
Video | Concept
explanations, CIA I | | learning | Tutorials and Notes | Assignment, Open
Book Exam | |--------------|---|--| | | Notes | Book Exam | | *** | | 1 | | *** 1 | | Questions, CIA I | | Write and | YouTube | Recall Steps, CIA I | | discuss | Video | Step by step | YouTube | Peer Review, CIA I | | learning | Video | | | | | | | | | | | | | | | Think Aloud | Interactive | Slip Test, CIA I | | Session | PPT | | | | | | | | | | | | | | | Inductive | Online | Short summary of | | Method | Tutorials and | the concept, CIA I | | | Notes | | | Concept | YouTube | Written | | based | | Assignment, Oral | | | , 1400 | Presentation, CIA I | | alsoussion | | | | | Step by step learning Think Aloud Session Inductive Method Concept | Step by step learning YouTube Video Think Aloud Interactive PPT Inductive PPT Inductive Online Tutorials and Notes Concept based YouTube Video | | | 5. | Features of a Good Design - Important Concepts Relating to Research Design | 1 | 1 | K4 | Analytic
Method | Collaborative learning | PowerPoint
Presentation | Conceptual Quiz,
Group Presentation,
CIA I | |-----|-------|--|------------|-----|--------|---------------------------|--------------------------------|----------------------------------|--| | | 6. | Different Research Designs Basic Principles of Experimental Designs, Developing Research Plan. | 1 | | K4, K5 | Collaborative learning | Concept
based
discussion | Online
Tutorials and
Notes | Recall steps, CIA I | | III | PROCE | SSING AND ANALY | YSIS OF DA | ATA | | | | | | | | 1. | Processing
Operations | 1 | 1 | K2 | Inductive
Method | Mind map | YouTube
Video | Quiz, CIA I | | | 2. | Some Problems in Processing | 1 | | K4, K5 | Lecture | Think Pair
Share | Online
Tutorials and
Notes | Recall steps, CIA I | | | 3. | Elements / Types of Analysis | 1 | | K2 | Lecture with illustration | Peer
Tuturing | Interactive PPT | Slip Test, CIA I | | | 4. | Statistics in Research | 1 | 1 | K2 | Lecture
Method | Group
Discussion | Power Point
Presentation | Peer discussion,
CIA II | | | 5. | Measures of
Central Tendency | 1 | | K2 | Collaborative learning | Jigsaw
method | YouTube
Video | Concept check,
CIA II | | | 6. | Measures of Dispersion, Measures of | 1 | 1 | K2 | Flipped
Classroom | Concept
based
discussion | Online
Tutorials and
Notes | MCQ, CIA II | | | | Asymmetry (Skewness) | | | | | | | | |----|-------|--|---|---|--------|------------------------|------------------------------|----------------------------------|---| | IV | RESEA | ARCH PROJECT | | | | | | | | | | 1. | Difference
between a
Dissertation and a
Thesis | 1 | 1 | K2 | Brainstorming | Group
reflection | Online
Tutorials and
Notes | Slip Test, CIA II | | | 2. | Basic Requirements of a Research Degree - Deciding on a research topic | 2 | | K4 | Flipped
Classroom | Inquiry
Based
Learning | YouTube
Video | Quiz, CIA II | | | 3. | Writing a proposal – Familiarity with Codes of Practice/ Rules and Regulations | 1 | 1 | K5 | Integrative method | Heuristic
Method | PowerPoint
Presentation | Written
Assignment, Oral
Presentation, CIA II | | | 4. | Ethical considerations - Different components of a Research Project | 1 | | K4, K5 | Collaborative learning | Brain
storming | YouTube
Video | Simple Questions,
CIA II | | | 5. | Title page – Abstract – Acknowledgement | 1 | 1 | K5 | Analytic
Method | Problem
Based
Learning | Online
Tutorials and
Notes | Concept
Explanation, CIA II | | | 6. | List of Contents,
Literature Review,
Methodology | 1 | | K2 | Heuristic
Method | Concept
Mapping | Online
Tutorials and
Notes | Sip test, CIA II | | 1. | Journal Articles | 1 | 1 | K2 | Lecture with | Student | Interactive | Written | |----|------------------|---|---|----|---------------|---------------|-------------|----------------------| | | | | | | illustrations | Expert Talk | PPT | Assignment, Oral | | | | | | | | _ | | Presentation, CIA II | | 2. | A book | 2 | | K4 | Socratic | Peer | Interactive | Peer Assessment, | | | | | | | method | Teaching | PPT | CIA II | | 3. | Conference | 1 | 1 | K2 | Collaborative | Collaborative | Interactive | Slip Test, CIA II | | | Presentation | | | | learning | Learning | PPT | | | 4. | A final note | 1 | | K4 | Lecturing, | Learning | Interactive | Written | | | | | | | Inquiry- | Circle | PPT | Assignment, Open | | | | | | | based | Presentation | | Book Exam | | | | | | | Learning | | | Questions, CIA II | | 5. | All punctuations | 1 | 1 | K4 | Blended | Topic | Interactive | Open Book Test, | | | | | | | classroom | Exploration | PPT | CIA II | | | | | | | | and Sharing | | | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability and Skill Development Activities (SD): Seminar Presentation, Group Discussion Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - **Professional Ethics** Activities related to Cross Cutting Issues: - Assignment: Make an interactive PPT (Any topic from unit V) (last date to submit: 30-09-2025) Seminar Topic: Publishing and Presenting your Research and Tool kit #### **SAMPLE QUESTIONS** #### Part A (2 Marks) - 1. What is the primary purpose of research? (CO1, K2) - a. To generate new knowledge b. To confirm existing theories c. To promote personal opinions - d. To entertain readers - 2. Name one technique used in defining a research problem. (CO1, K2) - 3. Common measures include mean, median, and mode. (State True / False) (CO2, K4) - 4. ----- provides a concise summary of the research project, including its purpose, methods, results, and conclusions. (CO1, K2) - 5. What challenges might researchers encounter during the publication process? (CO3, K4) - a. manuscript rejection - b. lengthy peer review processes - c. difficulty finding suitable journals for publication - d. All the above # Part B (4 Marks) - 1. Identify and analyse the common problems encountered by researchers in India. (CO3, K4) - 2. Describe the necessity of research design in a research study. (CO4, K2) - 3. Elaborate on the different types of analysis commonly used in research. (CO2, K4) - 4. Discuss the process of deciding on a research topic, emphasizing the factors that researchers should consider. Provide practical advice on how researchers can select a suitable research topic within their field of study. (CO4, K5) - 5. Explain the role of toolkits in research project management. How can researchers customize toolkits to suit their specific research needs? (CO5, K6) ## Part C (12 Marks) - 1. Compare and contrast quantitative and qualitative research methods, highlighting their respective strengths and weaknesses. Provide examples of research studies that employ each approach. (CO1, K4) - 2. Explain the basic principles underlying experimental designs and their significance in experimental research. (CO4, K2) - 3. Critically
analyze the role of statistics in research, discussing its importance in drawing meaningful conclusions from data analysis. (CO2, K4) - 4. Examine the role and significance of each component of a research project, including the title page, abstract, acknowledgment, list of contents, introduction, literature review, methodology, and style of presentation. How do these components contribute to the overall coherence and professionalism of the research report? (CO5, K5) - 5. Explore the components of writing a book based on research findings, including structuring the book, developing chapters, incorporating theoretical frameworks, and engaging with relevant literature. How does writing a book differ from writing journal articles in terms of scope, audience, and writing style? (CO5, K6) Head of the Department Dr. M.K. Angel Jebitha Course Instructor Dr. K. Jeya Daisy